Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Expert Rev Neurother ; 20(1): 65-84, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31829048

RESUMO

Introduction: Leukodystrophies constitute heterogenous group of rare heritable disorders primarily affecting the white matter of central nervous system. These conditions are often under-appreciated among physicians. The first clinical manifestations of leukodystrophies are often nonspecific and can occur in different ages from neonatal to late adulthood periods. The diagnosis is, therefore, challenging in most cases.Area covered: Herein, the authors discuss different aspects of leukodystrophies. The authors used MEDLINE, EMBASE, and GOOGLE SCHOLAR to provide an extensive update about epidemiology, classifications, pathology, clinical findings, diagnostic tools, and treatments of leukodystrophies. Comprehensive evaluation of clinical findings, brain magnetic resonance imaging, and genetic studies play the key roles in the early diagnosis of individuals with leukodystrophies. No cure is available for most heritable white matter disorders but symptomatic treatments can significantly decrease the burden of events. New genetic methods and stem cell transplantation are also under investigation to further increase the quality and duration of life in affected population.Expert opinion: The improvements in molecular diagnostic tools allow us to identify the meticulous underlying etiology of leukodystrophies and result in higher diagnostic rates, new classifications of leukodystrophies based on genetic information, and replacement of symptomatic managements with more specific targeted therapies.Abbreviations: 4H: Hypomyelination, hypogonadotropic hypogonadism and hypodontia; AAV: Adeno-associated virus; AD: autosomal dominant; AGS: Aicardi-Goutieres syndrome; ALSP: Axonal spheroids and pigmented glia; APGBD: Adult polyglucosan body disease; AR: autosomal recessive; ASO: Antisense oligonucleotide therapy; AxD: Alexander disease; BAEP: Brainstem auditory evoked potentials; CAA: Cerebral amyloid angiopathy; CADASIL: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy; CARASAL: Cathepsin A-related arteriopathy with strokes and leukoencephalopathy; CARASIL: Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy; CGH: Comparative genomic hybridization; ClC2: Chloride Ion Channel 2; CMTX: Charcot-Marie-Tooth disease, X-linked; CMV: Cytomegalovirus; CNS: central nervous system; CRISP/Cas9: Clustered regularly interspaced short palindromic repeat/CRISPR-associated 9; gRNA: Guide RNA; CTX: Cerebrotendinous xanthomatosis; DNA: Deoxyribonucleic acid; DSB: Double strand breaks; DTI: Diffusion tensor imaging; FLAIR: Fluid attenuated inversion recovery; GAN: Giant axonal neuropathy; H-ABC: Hypomyelination with atrophy of basal ganglia and cerebellum; HBSL: Hypomyelination with brainstem and spinal cord involvement and leg spasticity; HCC: Hypomyelination with congenital cataracts; HEMS: Hypomyelination of early myelinated structures; HMG CoA: Hydroxy methylglutaryl CoA; HSCT: Hematopoietic stem cell transplant; iPSC: Induced pluripotent stem cells; KSS: Kearns-Sayre syndrome; L-2-HGA: L-2-hydroxy glutaric aciduria; LBSL: Leukoencephalopathy with brainstem and spinal cord involvement and elevated lactate; LCC: Leukoencephalopathy with calcifications and cysts; LTBL: Leukoencephalopathy with thalamus and brainstem involvement and high lactate; MELAS: Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke; MERRF: Myoclonic epilepsy with ragged red fibers; MLC: Megalencephalic leukoencephalopathy with subcortical cysts; MLD: metachromatic leukodystrophy; MRI: magnetic resonance imaging; NCL: Neuronal ceroid lipofuscinosis; NGS: Next generation sequencing; ODDD: Oculodentodigital dysplasia; PCWH: Peripheral demyelinating neuropathy-central-dysmyelinating leukodystrophy-Waardenburg syndrome-Hirschprung disease; PMD: Pelizaeus-Merzbacher disease; PMDL: Pelizaeus-Merzbacher-like disease; RNA: Ribonucleic acid; TW: T-weighted; VWM: Vanishing white matter; WES: whole exome sequencing; WGS: whole genome sequencing; X-ALD: X-linked adrenoleukodystrophy; XLD: X-linked dominant; XLR: X-linked recessive.


Assuntos
Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Leucoencefalopatias , Criança , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/terapia , Humanos , Leucoencefalopatias/diagnóstico , Leucoencefalopatias/patologia , Leucoencefalopatias/terapia
2.
Orphanet J Rare Dis ; 14(1): 184, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31349848

RESUMO

BACKGROUND: Ribonucleases (RNases) are crucial for degradation of ribosomal RNA (rRNA). RNASET2 as a subtype of RNASEs is a 256 amino acid protein, encoded by RNASET2 gene located on chromosome six. Defective RNASET2 leads to RNASET2-deficient leukoencephalopathy, a rare autosomal recessive neurogenetic disorder with psychomotor delay as its main clinical symptom. The clinical findings can be similar to congenital cytomegalovirus (CMV) infection and Aicardi-Goutieres syndrome (AGS). METHODS: Herein, we presented a patient with motor delay, neurological regression, infrequent seizures and microcephaly at 5 months of age. Brain imaging showed white matter involvement, calcification and anterior temporal cysts. Basic metabolic tests, serum and urine CMV polymerase chain reaction (PCR) were requested. According to clinical and imaging findings, screening of RNASET2 and RMND1 genes were performed. The clinical data and magnetic resonance imaging (MRI) findings of previous reported individuals with RNASET2-deficient leukodystrophy were also reviewed and compared to the findings of our patient. RESULTS: Brain MRI findings were suggestive of RNASET2-deficient leukoencephalopathy, AGS and CMV infection. Basic metabolic tests were normal and CMV PCR was negative. Molecular study revealed a novel homozygous variant of c.233C > A; p.Ser78Ter in exon 4 of RNASET2 gene compatible with the diagnosis of RNASET2-deficient leukoencephalopathy. CONCLUSIONS: RNASET2-deficiency is a possible diagnosis in an infant presented with a static leukoencephalopathy and white matter involvement without megalencephaly. Due to overlapping clinical and radiologic features of RNASET2-deficient leukoencephalopathy, AGS and congenital CMV infections, molecular study as an important and helpful diagnostic tool should be considered to avoid misdiagnosis.


Assuntos
Doenças Autoimunes do Sistema Nervoso/diagnóstico , Infecções por Citomegalovirus/diagnóstico , Leucoencefalopatias/diagnóstico , Malformações do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Pré-Escolar , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Feminino , Humanos , Leucoencefalopatias/genética , Leucoencefalopatias/metabolismo , Imageamento por Ressonância Magnética , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/metabolismo , Gravidez , Ribonucleases/genética , Ribonucleases/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA