RESUMO
Immunotherapeutic drugs are promising medicines for cancer treatment. A potential candidate for immunotherapy is interleukin-12 (IL-12), a cytokine well known for its ability to mediate antitumor activity. We developed a plasmid encoding human IL-12 devoid of an antibiotic resistance gene (phIL12). For the approval of phase I clinical trials in basal cell carcinoma (BCC), the regulatory agency requires non-clinical in vivo testing of the pharmacodynamic, pharmacokinetic and toxicological properties of the plasmid. As human IL-12 is not biologically active in mice, a mouse ortholog of the plasmid phIL12 (pmIL12) was evaluated. The evaluation demonstrated the antitumor effectiveness of the protein accompanied by immune cell infiltration. The plasmid was distributed throughout the body, and the amount of plasmid diminished over time in all organs except the skin around the tumor. The therapy did not cause any detectable systemic toxicity. The results of the non-clinical evaluation demonstrated the safety and efficacy of the pmIL12/phIL12 GET, and on the basis of these results, approval was obtained for the initiation of a phase I clinical study in BCC.
Assuntos
Terapia Genética , Interleucina-12 , Animais , Interleucina-12/genética , Camundongos , Humanos , Terapia Genética/métodos , Plasmídeos/genética , Carcinoma Basocelular/terapia , Carcinoma Basocelular/genética , Carcinoma Basocelular/tratamento farmacológico , Carcinoma Basocelular/imunologia , Ensaios Clínicos Fase I como Assunto , Feminino , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/imunologiaRESUMO
In this study, we synthesized novel Pd(II)-indenyl complexes using various N-heterocyclic carbene (NHC) ligands, including chelating NHC-picolyl, NHC-thioether, and diNHC ligands, and two monodentate NHCs. Transmetalation reactions between a Pd(II)-indenyl precursor and silver-NHC complexes were generally employed, except for chelating diNHC derivatives, which required direct reaction with bisimidazolium salts and potassium carbonate. Characterization included NMR, HRMS analysis, and single-crystal X-ray diffraction. In vitro on five ovarian cancer cell lines showed notable cytotoxicity, with IC50 values in the micro- and submicromolar range. Some compounds exhibited intriguing selectivity for cancer cells due to higher tumor cell uptake. Mechanistic studies revealed that monodentate NHCs induced mitochondrial damage while chelating ligands caused DNA damage. One chelating NHC-picolyl ligand showed promising cytotoxicity and selectivity in high-grade serous ovarian cancer models, supporting its consideration for preclinical study.
Assuntos
Antineoplásicos , Compostos Heterocíclicos , Metano , Neoplasias Ovarianas , Paládio , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Paládio/química , Metano/análogos & derivados , Metano/química , Metano/farmacologia , Ligantes , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Indenos/química , Indenos/farmacologia , Indenos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-AtividadeRESUMO
Monoacylglycerol lipase (MAGL) is a promising target for cancer therapy due to its involvement in lipid metabolism and its impact on cancer hallmarks like cell proliferation, migration, and tumor progression. A potent reversible MAGL inhibitor, MAGL23, has been recently developed by our group, demonstrating promising anticancer activities. To enhance its pharmacological properties, a nanoformulation using nanocrystals coated with albumin was prepared (MAGL23AF). In a previous work, the formulated inhibitor showed potency in ovarian and colon cancer cell lines in terms of IC50, and was tested on mice in order to assess its biocompatibility, organs biodistribution and toxicity. In the present work, we expanded the investigation to assess the potential in vivo application of MAGL23AF. Stability assays in serum and in human derived microsomes showed a good structural stability in physiological conditions of MAGL23AF. The antitumor efficacy tested on mice bearing ovarian cancer tumor xenografts demonstrated that MAGL23AF is more potent than the non-formulated drug, leading to necrosis-driven cancer cell death. In vivo studies revealed that albumin-complexed nanocrystals improved the therapeutic window of MAGL23, exhibiting a favorable biodistribution with slightly increased accumulation in the tumor. In conclusion, the MAGL23AF showed increased in vitro stability in conditions mirroring the bloodstream environment and hepatic metabolism coupled with an optimal antitumor efficacy in vivo. These results not only validates the efficacy of our formulation but also positions it as a promising strategy for addressing challenges related to the solubility of drugs in body fluids.
Assuntos
Antineoplásicos , Monoacilglicerol Lipases , Nanopartículas , Neoplasias Ovarianas , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Animais , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Humanos , Camundongos , Linhagem Celular Tumoral , Monoacilglicerol Lipases/antagonistas & inibidores , Nanopartículas/química , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Distribuição Tecidual , Sistemas de Liberação de Medicamentos/métodos , Camundongos Nus , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/química , Albuminas/química , Portadores de Fármacos/químicaRESUMO
BACKGROUND: The identification of novel therapeutic strategies for ovarian cancer (OC), the most lethal gynecological neoplasm, is of utmost urgency. Here, we have tested the effectiveness of the compound 2c (4-hydroxy-2,6-bis(4-nitrobenzylidene)cyclohexanone 2). 2c interferes with the cysteine-dependent deubiquitinating enzyme (DUB) UCHL5, thus affecting the ubiquitin-proteasome-dependent degradation of proteins. METHODS: 2c phenotypic/molecular effects were studied in two OC 2D/3D culture models and in a mouse xenograft model. Furthermore, we propose an in silico model of 2c interaction with DUB-UCHL5. Finally, we have tested the effect of 2c conjugated to several linkers to generate 2c/derivatives usable for improved drug delivery. RESULTS: 2c effectively impairs the OC cell line and primary tumor cell viability in both 2D and 3D conditions. The effectiveness is confirmed in a xenograft mouse model of OC. We show that 2c impairs proteasome activity and triggers apoptosis, most likely by interacting with DUB-UCHL5. We also propose a mechanism for the interaction with DUB-UCHL5 via an in silico evaluation of the enzyme-inhibitor complex. 2c also reduces cell growth by down-regulating the level of the transcription factor E2F1. Eventually, 2c activity is often retained after the conjugation with linkers. CONCLUSION: Our data strongly support the potential therapeutic value of 2c/derivatives in OC.
RESUMO
The tumor microenvironment is importantly shaped by various cytokines, where interleukins (ILs) and interferons (IFNs) shape the balance of immune activity within tumor niche and associated lymphoid organs. Their importance in activation and tuning of both innate and adaptive immune responses prompted their use in several clinical trials, albeit with limited therapeutic efficacy and risk of toxicity due to systemic administration. Increasing preclinical evidence suggests that local delivery of ILs and IFNs could significantly increase their effectiveness, while simultaneously attenuate the known side effects and issues related to their biological activity. A prominent way to achieve this is to use cell-based delivery vehicles. For this purpose, mesenchymal stromal stem cells (MSCs) are considered an almost ideal candidate. Namely, MSCs can be obtained in large quantities and from obtainable sources (e.g. umbilical cord or adipose tissue), their ex vivo expansion is relatively straightforward compared to other cell types and they possess very low immunogenicity making them suitable for allogeneic use. Importantly, MSCs have shown an intrinsic capacity to respond to tumor-directed chemotaxis. This review provides a focused and detailed discussion on MSC-based gene therapy using ILs and IFNs, engineering techniques and insights on potential future advancements.
Assuntos
Terapia Genética , Interferons , Interleucinas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Neoplasias , Humanos , Células-Tronco Mesenquimais/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Terapia Genética/métodos , Interleucinas/uso terapêutico , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Microambiente Tumoral/imunologiaRESUMO
Primary human omental adipocytes and ovarian cancer(OC) cells establish a bidirectional communication in which tumor driven lipolysis is induced in adipocytes and the resulting fatty acids are delivered to cancer cells within the tumor microenvironment. Despite meaningful improvement in the treatment of OC, its efficacy is still limited by hydrophobicity and untargeted effects related to chemotherapeutics. Herein, omental adipocytes are firstly used as a reservoir for paclitaxel, named Living Paclitaxel Bullets (LPB) and secondly benefit from the established dialogue between adipocytes and cancer cells to engineer a drug delivery process that target specifically cancer cells. These results show that mature omental adipocytes can successfully uptake paclitaxel and deliver it to OC cells in a transwell coculture based in vitro model. In addition, the efficacy of this proof-of-concept has been demonstrated in vivo and induces a significant inhibition of tumor growth on a xenograft tumor model. The use of mature adipocytes can be suitable for clinical prospection in a cell-based therapy system, due to their mature and differentiated state, to avoid risks related to uncontrolled cell de novo proliferation capacity after the delivery of the antineoplastic drug as observed with other cell types when employed as drug carriers.
Assuntos
Adipócitos , Omento , Neoplasias Ovarianas , Paclitaxel , Paclitaxel/farmacologia , Paclitaxel/química , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/citologia , Animais , Linhagem Celular Tumoral , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Camundongos Nus , Técnicas de Cocultura , Sistemas de Liberação de Medicamentos/métodos , Microambiente Tumoral/efeitos dos fármacosRESUMO
Mouse tumor models are an important tool in cancer research, and the orthotopic cancer cell transplantation model is the most widely used among them. Methods for establishing tumor models may differ in many ways, including the selection of cancer cell lines and the type of urinary bladder pretreatment. Here, we describe our mouse orthotopic bladder tumor model using a labeled MB49 urothelial cancer cell line and chemical pretreatment with the cationic polypeptide poly-L-lysine to traumatize the bladder epithelium. Double labeling of MB49 cancer cells by their transduction with GFP and internalization of metal nanoparticles allows the study of their implantation process from the first hours to several days after intravesical injection, as well as the analysis of developed tumors after 3 weeks. Thus, our model provides a comprehensive analysis of the early and late stages of tumor development in the bladder at the light and electron microscopic level.
Assuntos
Neoplasias da Bexiga Urinária , Animais , Camundongos , Microscopia Eletrônica , Bexiga Urinária , Linhagem Celular , Mecanismos de Defesa , Modelos Animais de DoençasRESUMO
Metastatic disease is the major cause of cancer death, and the lung is one of the most common sites of cancer metastases. To investigate systemic antitumor effects or protective potential of local therapies, mouse models with induced metastases are indispensable in preclinical cancer research. Here, we describe the protocol for the metastatic mouse model established through induced 4T1 mammary carcinoma metastases. With minor prior optimization, it can be applied to other tumor cell lines of interest.
Assuntos
Neoplasias Pulmonares , Animais , Camundongos , Linhagem Celular Tumoral , Modelos Animais de Doenças , TóraxRESUMO
Assessment of functional tumor-specific T-cell responses in preclinical tumor models represents an important tool for successful translation of new immunotherapies to clinics. Usually, it requires a known tumor antigen target. Here, we describe the method to detect tumor-specific T cell after immunotherapies without a known antigen. Splenocytes, lymph node immune cells, or PBMCs are isolated from treated mice and stimulated with relevant tumor cells ex vivo before immunospot analysis of Granzyme B and interferon γ-positive T cells. The method is especially valuable for monitoring tumor-specific T cells after vaccination with various whole tumor vaccines or after in situ vaccination and other antigen agnostic immunotherapies, where no specific antigens are used.
Assuntos
Vacinas Anticâncer , Neoplasias , Animais , Camundongos , Linfócitos T , Neoplasias/terapia , Imunoterapia , Interferon gamaRESUMO
Bladder cancer is the 10th most commonly diagnosed cancer with the highest lifetime treatment costs. The human amniotic membrane (hAM) is the innermost foetal membrane that possesses a wide range of biological properties, including anti-inflammatory, antimicrobial and anticancer properties. Despite the growing number of studies, the mechanisms associated with the anticancer effects of human amniotic membrane (hAM) are poorly understood. Here, we reported that hAM preparations (homogenate and extract) inhibited the expression of the epithelial-mesenchymal transition markers N-cadherin and MMP-2 in bladder cancer urothelial cells in a dose-dependent manner, while increasing the secretion of TIMP-2. Moreover, hAM homogenate exerted its antimigratory effect by downregulating the expression of FAK and proteins involved in actin cytoskeleton reorganisation, such as cortactin and small RhoGTPases. In muscle-invasive cancer urothelial cells, hAM homogenate downregulated the PI3K/Akt/mTOR signalling pathway, the key cascade involved in promoting bladder cancer. By using normal, non-invasive papilloma and muscle-invasive cancer urothelial models, new perspectives on the anticancer effects of hAM have emerged. The results identify new sites for therapeutic intervention and are prompt encouragement for ongoing anticancer drug development studies.
Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias da Bexiga Urinária , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Âmnio/metabolismo , Movimento Celular , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Músculos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-MesenquimalRESUMO
Gene immunotherapy has become an important approach in the treatment of cancer. One example is the introduction of genes encoding immunostimulatory cytokines, such as interleukin 2 and interleukin 12, which stimulate immune cells in tumours. The aim of our study was to determine the effects of gene electrotransfer of plasmids encoding interleukin 2 and interleukin 12 individually and in combination in the CT26 murine colon carcinoma cell line in mice. In the in vitro experiment, the pulse protocol that resulted in the highest expression of IL-2 and IL-12 mRNA and proteins was used for the in vivo part. In vivo, tumour growth delay and also complete response were observed in the group treated with the plasmid combination. Compared to the control group, the highest levels of various immunostimulatory cytokines and increased immune infiltration were observed in the combination group. Long-term anti-tumour immunity was observed in the combination group after tumour re-challenge. In conclusion, our combination therapy efficiently eradicated CT26 colon carcinoma in mice and also generated strong anti-tumour immune memory.
Assuntos
Carcinoma , Neoplasias do Colo , Animais , Camundongos , Interleucina-2/genética , Interleucina-12/genética , Neoplasias do Colo/genética , Neoplasias do Colo/terapia , Imunoterapia , CitocinasRESUMO
DNA vaccination is one of the emerging approaches for a wide range of applications, including prophylactic vaccination against infectious diseases and therapeutic vaccination against cancer. The aim of this study was to evaluate the feasibility of our previously optimized protocols for gene electrotransfer (GET)-mediated delivery of plasmid DNA into skin and muscle tissues on a model of COVID-19 vaccine. Plasmids encoding the SARS-CoV-2 proteins spike (S) and nucleocapsid (N) were used as the antigen source, and a plasmid encoding interleukin 12 (IL-12) was used as an adjuvant. Vaccination was performed in the skin or muscle tissue of C57BL/6J mice on days 0 and 14 (boost). Two weeks after the boost, blood, spleen, and transfected tissues were collected to determine the expression of S, N, IL-12, serum interferon-γ, the induction of antigen-specific IgG antibodies, and cytotoxic T-cells. In accordance with prior in vitro experiments that indicated problems with proper expression of the S protein, vaccination with S did not induce S-specific antibodies, whereas significant induction of N-specific antibodies was detected after vaccination with N. Intramuscular vaccination outperformed skin vaccination and resulted in significant induction of humoral and cell-mediated immunity. Moreover, both boost and adjuvant were found to be redundant for the induction of an immune response. Overall, the study confirmed the feasibility of the GET for DNA vaccination and provided valuable insights into this approach.
RESUMO
Targeting the tumor vasculature through specific endothelial cell markers involved in different signaling pathways represents a promising tool for tumor radiosensitization. Two prominent targets are endoglin (CD105), a transforming growth factor ß co-receptor, and the melanoma cell adhesion molecule (CD1046), present also on many tumors. In our recent in vitro study, we constructed and evaluated a plasmid for simultaneous silencing of these two targets. In the current study, our aim was to explore the therapeutic potential of gene electrotransfer-mediated delivery of this new plasmid in vivo, and to elucidate the effects of combined therapy with tumor irradiation. The antitumor effect was evaluated by determination of tumor growth delay and proportion of tumor free mice in the syngeneic murine mammary adenocarcinoma tumor model TS/A. Histological analysis of tumors (vascularization, proliferation, hypoxia, necrosis, apoptosis and infiltration of immune cells) was performed to evaluate the therapeutic mechanisms. Additionally, potential activation of the immune response was evaluated by determining the induction of DNA sensor STING and selected pro-inflammatory cytokines using qRT-PCR. The results point to a significant radiosensitization and a good therapeutic potential of this gene therapy approach in an otherwise radioresistant and immunologically cold TS/A tumor model, making it a promising novel treatment modality for a wide range of tumors.
Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Animais , Camundongos , Terapia Genética/métodos , Neovascularização Patológica/genética , Neovascularização Patológica/terapia , Neovascularização Patológica/patologia , Endoglina/genética , PlasmídeosRESUMO
Multimodal treatment approaches, such as radio-immunotherapy, necessitate regimen optimization and the investigation of the interactions of different modalities. The aim of this study was two-fold. Firstly, to select the most effective combination of irradiation and the previously developed tumor cell-based vaccine and then to provide insight into the immune response to the selected combinatorial treatment. The study was performed in immunologically different murine tumor models: B16F10 melanoma and CT26 colorectal carcinoma. The most effective combinatorial treatment was selected by comparing three different IR regimens and three different vaccination regimens. We determined the local immune response by investigating immune cell infiltration at the vaccination site and in tumors. Lastly, we determined the systemic immune response by investigating the amount of tumor-specific effector lymphocytes in draining lymph nodes. The selected most effective combinatorial treatment was 5× 5 Gy in combination with concomitant single-dose vaccination (B16F10) or with concomitant multi-dose vaccination (CT26). The combinatorial treatment successfully elicited a local immune response at the vaccination site and in tumors in both tumor models. It also resulted in the highest amount of tumor-specific effector lymphocytes in draining lymph nodes in the B16F10, but not in the CT26 tumor-bearing mice. However, the amount of tumor-specific effector lymphocytes was intrinsically higher in the CT26 than in the B16F10 tumor model. Upon the selection of the most effective combinatorial treatment, we demonstrated that the vaccine elicits an immune response and contributes to the antitumor efficacy of tumor irradiation. However, this interaction is multi-faceted and appears to be dependent on the tumor immunogenicity.
Assuntos
Vacinas Anticâncer , Melanoma , Animais , Antígenos de Neoplasias , Imunidade , Imunoterapia/métodos , CamundongosRESUMO
BACKGROUND: For hepatocellular carcinoma (HCC), effective therapeutic approaches are lacking. As aberrant gene methylation is a major contributor to HCC development, demethylating drugs such as 5-azacytidine (5-Aza) have been proposed. As most 5-Aza mechanisms of action are unknown, we investigated its phenotypic/molecular effects. METHODS: 5-Aza effects were examined in the human HCC cell lines JHH-6/HuH-7 and in the rat cell-line N1-S1. We also employed a xenograft mouse model (HuH-7), a zebrafish model (JHH-6), and an orthotopic syngeneic rat model (N1-S1) of HCC. RESULTS: 5-Aza downregulated cell viability/growth/migration/adhesion by upregulating miR-139-5p, which in turn downregulated ROCK2/cyclin D1/E2F1 and increased p27kip1, resulting in G1/G0 cell accumulation. Moreover, a decrease in cyclin B1 and an increase in p27kip1 led to G2/M accumulation. Finally, we observed a decrease in MMP-2 levels, a stimulator of HCC cell migration. Aza effects were confirmed in the mouse model; in the zebrafish model, we also demonstrated the downregulation of tumor neo-angiogenesis, and in the orthotopic rat model, we observed impaired N1-S1 grafting in a healthy liver. CONCLUSION: We demonstrate for the first time that 5-Aza can impair HCC development via upregulation of miR-139-5p, which in turn impairs the ROCK2/cyclin D1/E2F1/cyclin B1 pro-proliferative pathway and the ROCK2/MMP-2 pro-migratory pathway. Thus, we provide novel information about 5-Aza mechanisms of action and deepen the knowledge about the crosstalk among ROCK2/cyclin D1/E2F1/cyclin B1/p27kip1/MMP-2 in HCC.
RESUMO
Interleukin 12 (IL-12) is a cytokine used as a therapeutic molecule in cancer immunotherapy. Gene electrotransfer mediated delivery of IL-12 gene has reached clinical evaluation in the USA using a plasmid that in addition to IL-12 gene also carry an antibiotic resistance gene needed for its production in bacteria. In Europe however, European Medicines Agency recommends against the use of antibiotics during the production of clinical grade plasmids. We have prepared several antibiotic resistance gene-free plasmids using an antibiotic-free selection strategy called operator-repressor titration, including plasmids encoding mouse, canine and human IL-12 orthologues. The aim of this study was to evaluate the maintenance of these plasmids in bacterial culture and test their transfection efficiency using gene electrotransfer. Plasmid maintenance was evaluated by determining plasmid yields and topologies after subculturing transformed bacteria. Transfection efficiency was evaluated by determining the plasmid copy number, expression and cytotoxicity after gene electrotransfer to mouse, canine and human melanoma cells. The results demonstrated that our IL-12 plasmids without an antibiotic resistance gene are stably maintained in bacteria and provide sufficient IL-12 expression after in vitro gene electrotransfer; therefore, they have the potential to proceed to further in vivo evaluation studies.
RESUMO
Interleukin 12 (IL-12) is a key cytokine that mediates antitumor activity of immune cells. To fulfill its clinical potential, the development is focused on localized delivery systems, such as gene electrotransfer, which can provide localized delivery of IL-12 to the tumor microenvironment. Gene electrotransfer of the plasmid encoding human IL-12 is already in clinical trials in USA, demonstrating positive results in the treatment of melanoma patients. To comply with EU regulatory requirements for clinical application, which recommend the use of antibiotic resistance gene-free plasmids, we constructed and developed the production process for the clinical grade quality antibiotic resistance gene-free plasmid encoding human IL-12 (p21-hIL-12-ORT) and its ortholog encoding murine IL-12 (p21-mIL-12-ORT). To demonstrate the suitability of the p21-hIL-12-ORT or p21-mIL-12-ORT plasmid for the first-in-human clinical trial, the biological activity of the expressed transgene, its level of expression and plasmid copy number were determined in vitro in the human squamous cell carcinoma cell line FaDu and the murine colon carcinoma cell line CT26. The results of the non-clinical evaluation in vitro set the basis for further in vivo testing and evaluation of antitumor activity of therapeutic molecules in murine models as well as provide crucial data for further clinical trials of the constructed antibiotic resistance gene-free plasmid in humans.
RESUMO
Non-muscle-invasive bladder cancer is the most common form of bladder cancer. The main problem in managing bladder tumors is the high recurrence after the transurethral resection of bladder tumors (TURBT). Our study aimed to examine the fate of intravesically applied cancer cells as the implantation of cancer cells after TURBT is thought to be a cause of tumor recurrence. We established an orthotopic mouse bladder tumor model with MB49-GFP cancer cells and traced them during the first three days to define their location and contacts with normal urothelial cells. Data were obtained by Western blot, immunolabeling, and light and electron microscopy. We showed that within the first two hours, applied cancer cells adhered to the traumatized epithelium by cell projections containing α3ß1 integrin on their tips. Cancer cells then migrated through the epithelium and on day 3, they reached the basal lamina or even penetrated it. In established bladder tumors, E-cadherin and desmoplakin 1/2 were shown as feasible immunohistochemical markers of tumor margins based on the immunolabeling of various junctional proteins. Altogether, these results for the first time illustrate cancer cell implantation in vivo mimicking cellular events of tumor recurrence in bladder cancer patients.
Assuntos
Epitélio/patologia , Recidiva Local de Neoplasia/patologia , Neoplasias da Bexiga Urinária/patologia , Bexiga Urinária/patologia , Animais , Caderinas/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Modelos Animais de Doenças , Feminino , Integrina alfa3beta1/metabolismo , Junções Intercelulares/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Bexiga Urinária/ultraestrutura , Neoplasias da Bexiga Urinária/ultraestrutura , Urotélio/patologia , Urotélio/ultraestruturaRESUMO
In situ vaccination is a promising immunotherapeutic approach, where various local ablative therapies are used to induce an immune response against tumor antigens that are released from the therapy-killed tumor cells. We recently proposed using intratumoral gene electrotransfer for concomitant transfection of a cytotoxic cytokine tumor necrosis factor-α (TNFα) to induce in situ vaccination, and an immunostimulatory cytokine interleukin 12 (IL-12) to boost the primed immune response. Here, our aim was to test the local and systemic effectiveness of the approach in tree syngeneic mouse tumor models and associate it with tumor immune profiles, characterized by tumor mutational burden, immune infiltration and expression of PD-L1 and MHC-I on tumor cells. While none of the tested characteristic proved predictive for local effectiveness, high tumor mutational burden, immune infiltration and MHC-I expression were associated with higher abscopal effectiveness. Hence, we have confirmed that both the abundance and presentation of tumor antigens as well as the absence of immunosuppressive mechanisms are important for effective in situ vaccination. These findings provide important indications for future development of in situ vaccination based treatments, and for the selection of tumor types that will most likely benefit from it.
Assuntos
Regulação da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Interleucina-12/genética , Mutação , Transfecção , Fator de Necrose Tumoral alfa/genética , Vacinação , Animais , Linhagem Celular Tumoral , CamundongosRESUMO
Targeting tumor vasculature through specific endothelial cell markers represents a promising approach for cancer treatment. Here our aim was to construct an antibiotic resistance gene-free plasmid encoding shRNAs to simultaneously target two endothelial cell markers, CD105 and CD146, and to test its functionality and therapeutic potential in vitro when delivered by gene electrotransfer (GET) and combined with irradiation (IR). Functionality of the plasmid was evaluated by determining the silencing of the targeted genes using qRT-PCR. Antiproliferative and antiangiogenic effects were determined by the cytotoxicity assay tube formation assay and wound healing assay in murine endothelial cells 2H-11. The functionality of the plasmid construct was also evaluated in malignant melanoma tumor cell line B16F10. Additionally, potential activation of immune response was measured by induction of DNA sensor STING and proinflammatory cytokines by qRT-PCR in endothelial cells 2H-11. We demonstrated that the plasmid construction was successful and can efficiently silence the expression of the two targeted genes. As a consequence of silencing, reduced migration rate and angiogenic potential was confirmed in 2H-11 endothelial cells. Furthermore, induction of DNA sensor STING and proinflammatory cytokines were determined, which could add to the therapeutic effectiveness when used in vivo. To conclude, we successfully constructed a novel plasmid DNA with two shRNAs, which holds a great promise for further in vivo testing.