Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ther Apher Dial ; 27(6): 1035-1039, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37605348

RESUMO

INTRODUCTION: Plasma exchange therapy (PE) is useful for patients with primary macroglobulinemia and multiple myeloma who present with hyperviscosity syndrome. However, hyperviscous blood may coagulate in the circuit during treatment, and in that case necessitate discontinuation of the treatment. This time, we report that we were able to prevent coagulation in the circuit by adding some ideas during the membrane separation method. METHODS: Physiological saline is injected in front of the plasma separation membrane to pre-dilute the blood, followed by filtration through the plasma separation membrane. RESULTS: As a result of pre-diluting with physiological saline to reduce the viscosity entering the separation membrane, it was possible to process the planned target amount. CONCLUSION: In patients with hyperviscosity syndrome who showed intracircuit coagulation during plasma exchange therapy, devising a predilution method should be considered as one of the ways to continue treatment.


Assuntos
Mieloma Múltiplo , Macroglobulinemia de Waldenstrom , Humanos , Troca Plasmática , Macroglobulinemia de Waldenstrom/terapia , Viscosidade Sanguínea/fisiologia , Plasmaferese , Mieloma Múltiplo/terapia , Síndrome
2.
Biol Open ; 11(1)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34812852

RESUMO

The full-length receptor for advanced glycation end products (RAGE) is a multiligand pattern recognition receptor. High-mobility group box 1 (HMGB1) is a RAGE ligand of damage-associated molecular patterns that elicits inflammatory reactions. The shedded isoform of RAGE and endogenous secretory RAGE (esRAGE), a splice variant, are soluble isoforms (sRAGE) that act as organ-protective decoys. However, the pathophysiologic roles of RAGE/sRAGE in acute kidney injury (AKI) remain unclear. We found that AKI was more severe, with enhanced renal tubular damage, macrophage infiltration, and fibrosis, in mice lacking both RAGE and sRAGE than in wild-type (WT) control mice. Using murine tubular epithelial cells (TECs), we demonstrated that hypoxia upregulated messenger RNA (mRNA) expression of HMGB1 and tumor necrosis factor α (TNF-α), whereas RAGE and esRAGE expressions were paradoxically decreased. Moreover, the addition of recombinant sRAGE canceled hypoxia-induced inflammation and promoted cell viability in cultured TECs. sRAGE administration prevented renal tubular damage in models of ischemia/reperfusion-induced AKI and of anti-glomerular basement membrane (anti-GBM) glomerulonephritis. These results suggest that sRAGE is a novel therapeutic option for AKI.


Assuntos
Injúria Renal Aguda , Injúria Renal Aguda/etiologia , Animais , Isquemia , Camundongos , Isoformas de Proteínas , Receptor para Produtos Finais de Glicação Avançada/genética , Reperfusão
3.
Sci Rep ; 10(1): 14292, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32868830

RESUMO

Peritoneal fibrosis (PF) is a severe complication of peritoneal dialysis, but there are few effective therapies for it. Recent studies have revealed a new biological function of trehalose as an autophagy inducer. Thus far, there are few reports regarding the therapeutic effects of trehalose on fibrotic diseases. Therefore, we examined whether trehalose has anti-fibrotic effects on PF. PF was induced by intraperitoneal injection of chlorhexidine gluconate (CG). CG challenges induced the increase of peritoneal thickness, ColIα1 mRNA expression and hydroxyproline content, all of which were significantly attenuated by trehalose. In addition, CG challenges induced a marked peritoneal accumulation of α-SMA+ myofibroblasts that was reduced by trehalose. The number of Wt1+ α-SMA+ cells in the peritoneum increased following CG challenges, suggesting that a part of α-SMA+ myofibroblasts were derived from peritoneal mesothelial cells (PMCs). The number of Wt1+ α-SMA+ cells was also suppressed by trehalose. Additionally, trehalose attenuated the increase of α-SMA and ColIα1 mRNA expression induced by TGF-ß1 through Snail protein degradation, which was dependent on autophagy in PMCs. These results suggest that trehalose might be a novel therapeutic agent for PF through the induction of autophagy and the suppression of mesothelial-to-mesenchymal transition in PMCs.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibrose Peritoneal/tratamento farmacológico , Fatores de Transcrição da Família Snail/metabolismo , Trealose/uso terapêutico , Animais , Clorexidina/análogos & derivados , Clorexidina/farmacologia , Células Epiteliais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Fibrose Peritoneal/induzido quimicamente
4.
CEN Case Rep ; 8(3): 200-204, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30941695

RESUMO

A 60-year-old man was diagnosed with psoriasis 4 years ago. Treatment with adalimumab (a monoclonal anti-TNF-α antibody) became ineffective 1 year ago, and proteinuria and urinary occult blood were detected. Treatment with topical medicine, ultraviolet therapy, and etretinate resulted in remission of psoriasis, and proteinuria and hematuria also improved. For maintenance of remission, treatment with secukinumab (a human anti-interleukin-17A monoclonal antibody) was initiated. After the induction phase, treatment was changed from once a week to once every 4 weeks. After 5 months, he developed nephritis with kidney dysfunction, hematuria, and severe proteinuria (14 g/g Cr) accompanied by pitting edema. After admission, treatment with secukinumab was continued. Kidney biopsy revealed IgA nephropathy with fibrocellular crescents, and immunofluorescence analysis did not detect galactose-deficient IgA1. With these findings, he was diagnosed as secondary IgA nephropathy associated with psoriasis. Tonsillectomy followed by steroid pulse therapy prevented proteinuria and kidney function. In this case, treatment of refractory psoriasis with secukinumab and tonsillectomy was effective, leading to remission of relapsing secondary IgA nephropathy. Therefore, secukinumab might play an immunological role in the treatment of nephropathy.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Glomerulonefrite por IGA/etiologia , Psoríase/tratamento farmacológico , Anticorpos Monoclonais Humanizados/farmacologia , Humanos , Interleucina-17/antagonistas & inibidores , Masculino , Pessoa de Meia-Idade , Psoríase/complicações
5.
Sci Rep ; 7(1): 5392, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710437

RESUMO

Peritoneal fibrosis (PF) is a serious complication in various clinical settings, but the mechanisms driving it remain to be fully determined. Connective tissue growth factor (CTGF) is known to regulate fibroblast activities. We therefore examined if CTGF inhibition has anti-fibrotic effects in PF. PF was induced by repetitive intraperitoneal injections of chlorhexidine gluconate (CG) in mice with type I pro-collagen promoter-driven green fluorescent protein (GFP) expression to identify fibroblasts. FG-3019, an anti-CTGF monoclonal antibody, was used to inhibit CTGF. CG-induced PF was significantly attenuated in FG-3019-treated mice. CG challenges induced marked accumulations of proliferating fibroblasts and of myofibroblasts, which were both reduced by FG-3019. Levels of peritoneal CTGF expression were increased by CG challenges, and suppressed in FG-3019-treated mice. FG-3019 treatment also reduced the number of CD31+ vessels and VEGF-A-positive cells in fibrotic peritoneum. In vitro studies using NIH 3T3 fibroblasts and peritoneal mesothelial cells (PMCs) showed that CTGF blockade suppressed TGF-ß1-induced fibroblast proliferation and myofibroblast differentiation, PMC mesothelial-to-mesenchymal transition, and VEGF-A production. These findings suggest that the inhibition of CTGF by FG-3019 might be a novel treatment for PF through the regulation of fibroblast and myofibroblast accumulation and angiogenesis.


Assuntos
Inibidores da Angiogênese/farmacologia , Anticorpos Monoclonais/farmacologia , Fator de Crescimento do Tecido Conjuntivo/genética , Neovascularização Patológica/prevenção & controle , Fibrose Peritoneal/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Anticorpos Monoclonais Humanizados , Diferenciação Celular/efeitos dos fármacos , Clorexidina/análogos & derivados , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Fator de Crescimento do Tecido Conjuntivo/antagonistas & inibidores , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Células NIH 3T3 , Neovascularização Patológica/induzido quimicamente , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Fibrose Peritoneal/induzido quimicamente , Fibrose Peritoneal/genética , Fibrose Peritoneal/patologia , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA