Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(18): 9471-9480, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38649324

RESUMO

Nanometer-sized diamonds (NDs) containing nitrogen vacancy centers have garnered significant attention as potential quantum sensors for reading various types of physicochemical information in vitro and in vivo. However, NDs intrinsically aggregate when placed in biological environments, hampering their sensing capacities. To address this issue, the grafting of hydrophilic polymers onto the surface of NDs has been demonstrated considering their excellent ability to prevent protein adsorption. To this end, crowding of the grafted chains plays a crucial role because it is directly associated with the antiadsorption effect of proteins; however, its quantitative evaluation has not been reported previously. In this study, we graft poly(ethylene glycol) (PEG) with various molecular weights onto NDs, determine their crowding using a gas adsorption technique, and disclose the cross-correlation between the pH in the grafting reaction, crowding density, molecular weight, and the prevention effect on protein adsorption. PEG-grafted NDs exhibit a pronounced effect on the prevention of lung accumulation after intravenous injection in mice. PEG crowding was compared to that calculated by using a diameter determined by dynamic light scattering (DLS) assuming a sphere.


Assuntos
Técnicas Biossensoriais , Pulmão , Nanodiamantes , Polietilenoglicóis , Polietilenoglicóis/química , Adsorção , Animais , Nanodiamantes/química , Camundongos , Técnicas Biossensoriais/métodos , Proteínas/química
2.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884589

RESUMO

The non-targeted effects of radiation have been known to induce significant alternations in cell survival. Although the effects might govern the progression of tumor sites following advanced radiotherapy, the impacts on the intercellular control of the cell cycle following radiation exposure with a modified field, remain to be determined. Recently, a fluorescent ubiquitination-based cell-cycle indicator (FUCCI), which can visualize the cell-cycle phases with fluorescence microscopy in real time, was developed for biological cell research. In this study, we investigated the non-targeted effects on the regulation of the cell cycle of human cervical carcinoma (HeLa) cells with imperfect p53 function that express the FUCCI (HeLa-FUCCI cells). The possible effects on the cell-cycle phases via soluble factors were analyzed following exposure to different field configurations, which were delivered using a 150 kVp X-ray irradiator. In addition, using synchrotron-generated, 5.35 keV monochromatic X-ray microbeams, high-precision 200 µm-slit microbeam irradiation was performed to investigate the possible impacts on the cell-cycle phases via cell-cell contacts. Collectively, we could not detect the intercellular regulation of the cell cycle in HeLa-FUCCI cells, which suggested that the unregulated cell growth was a malignant tumor. Our findings indicated that there was no significant intercellular control system of the cell cycle in malignant tumors during or after radiotherapy, highlighting the differences between normal tissue and tumor characteristics.


Assuntos
Ciclo Celular , Corantes Fluorescentes/química , Síncrotrons/instrumentação , Ubiquitinação , Neoplasias do Colo do Útero/patologia , Sobrevivência Celular , Feminino , Células HeLa , Humanos , Microscopia de Fluorescência , Raios X
3.
Radiat Res ; 194(6): 698-706, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33348374

RESUMO

Spatially fractionated radiation therapy (SFRT) has been based on the delivery of a single high-dose fraction to a large treatment area that has been divided into several smaller fields, reducing the overall toxicity and adverse effects. Complementary microbeam studies have also shown an effective tissue-sparing effect (TSE) in various tissue types and species after spatially fractionated irradiation at the microscale level; however, the underlying biological mechanism remains elusive. In the current study, using the combination of an ex vivo mouse spermatogenesis model and high-precision X-ray microbeams, we revealed the significant TSE for maintaining spermatogenesis after spatially fractionated microbeam irradiation. We used the following ratios of the irradiated to nonirradiated areas: 50:50, 150:50 and 350:50 µm-slit, where approximately 50, 75 and 87.5% of the sample was irradiated (using center-to-center distances of 100, 200 and 400 µm, respectively). We found that the 50 and 75% micro-slit irradiated testicular tissues showed an almost unadulterated TSE for spermatogenesis, whereas the 87.5% micro-slit irradiated tissues showed an incomplete TSE. This suggests that the TSE efficiency for spermatogenesis is dependent on the size of the nonirradiated spermatogonial stem cell pool in the irradiated testicular tissues. In addition, there would be a spatiotemporal limitation of stem cell migration/competition, resulting in the insufficient TSE for 87.5% micro-slit irradiated tissues. These stem cell characteristics are essential for the accurate prediction of tissue-level responses during or after SFRT, indicating the clinical potential for achieving better outcomes while preventing adverse effects.


Assuntos
Fracionamento da Dose de Radiação , Espermatogênese/efeitos da radiação , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Síncrotrons
4.
J Clin Med ; 9(4)2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290436

RESUMO

Radiotherapy can result in temporary or permanent gonadal toxicity in male cancer patients despite the high precision and accuracy of modern radiation treatment techniques. Previous radiobiological studies have shown an effective tissue-sparing response in various tissue types and species following exposure to spatially fractionated radiation. In the present study, we used an ex vivo mouse testicular tissue culture model and a conventional X-ray irradiation device to evaluate the tissue-sparing effect (TSE) of spatially fractionated X-rays for the protection of male fertility from radiotherapy-related adverse effects. We revealed a significant TSE for maintaining spermatogenesis in the ex vivo testes model following spatially fractionated X-ray irradiation. Moreover, we experimentally propose a possible mechanism by which the migration of spermatogonial cells, from the non-irradiated areas to the irradiated ones, in irradiated testicular tissue, is essential for the TSE and maintaining spermatogenesis. Therefore, our findings demonstrate that the control of TSE following spatially fractionated X-rays in the testes has a considerable potential for clinical application. Interdisciplinary research will be essential for further expanding the applicability of this method as an approach for the preservation of male fertility during or after radiotherapy.

5.
Sci Rep ; 9(1): 12618, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575926

RESUMO

Microbeam radiotherapy (MRT) is based on a spatial fractionation of synchrotron X-ray microbeams at the microscale level. Although the tissue-sparing effect (TSE) in response to non-uniform radiation fields was recognized more than one century ago, the TSE of MRT in the testes and its clinical importance for preventing male fertility remain to be determined. In this study, using the combination of MRT techniques and a unique ex vivo testes organ culture, we show, for the first time, the MRT-mediated TSE for the preservation of spermatogenesis. Furthermore, our high-precision microbeam analysis revealed that the survival and potential migration steps of the non-irradiated germ stem cells in the irradiated testes tissue would be needed for the effective TSE for spermatogenesis. Our findings indicated the distribution of dose irradiated in the testes at the microscale level is of clinical importance for delivering high doses of radiation to the tumor, while still preserving male fertility.


Assuntos
Movimento Celular/efeitos da radiação , Preservação da Fertilidade , Células Germinativas , Espermatogênese/efeitos da radiação , Testículo , Terapia por Raios X , Animais , Sobrevivência Celular/efeitos da radiação , Células Germinativas/metabolismo , Células Germinativas/patologia , Masculino , Camundongos , Camundongos Transgênicos , Testículo/metabolismo , Testículo/patologia
6.
Radiat Prot Dosimetry ; 183(1-2): 79-83, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30544250

RESUMO

To investigate the repair process of DNA damage induced by ionizing radiation in isolation from various types of cytoplasmic damage, we transfected X-irradiated enhanced green fluorescent protein (EGFP)-expressing plasmid DNA into non-irradiated mammalian cells using lipofectamine. The repair kinetics of the irradiated plasmids in the cells were visualized under microscopy as the EGFP fluorescence emitted by transfected cells. Using an agarose gel electrophoresis method, the yields of single- and double-strand breaks of the plasmids were also quantified. As positive control experiments, plasmid DNA with single- or double-strand breaks induced by a nicking or restriction enzyme were also transfected into the cells. The DNA repair rates for X-ray-irradiated plasmids were significantly lower than those of the enzymatically digested positive control samples. These results indicate that X-rays could induce less repairable damage than that induced by enzymes.


Assuntos
Neoplasias da Mama/radioterapia , Quebras de DNA/efeitos da radiação , Reparo do DNA/fisiologia , Técnicas de Cultura de Células , Ciclo Celular/efeitos da radiação , Feminino , Proteínas de Fluorescência Verde , Humanos , Técnicas In Vitro , Microscopia de Fluorescência , Plasmídeos , Tolerância a Radiação/fisiologia , Radiação Ionizante , Transfecção , Células Tumorais Cultivadas/efeitos da radiação , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA