Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(10): 4158-4167, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38751042

RESUMO

The cyclic peptide OS1 (amino acid sequence: CTERMALHNLC), which has a disulfide bond between both termini cysteine residues, inhibits complex formation between the platelet glycoprotein Ibα (GPIbα) and the von Willebrand factor (vWF) by forming a complex with GPIbα. To study the binding mechanism between GPIbα and OS1 and, therefore, the inhibition mechanism of the protein-protein GPIbα-vWF complex, we have applied our multicanonical molecular dynamics (McMD)-based dynamic docking protocol starting from the unbound state of the peptide. Our simulations have reproduced the experimental complex structure, although the top-ranking structure was an intermediary one, where the peptide was bound in the same location as in the experimental structure; however, the ß-switch of GPIbα attained a different conformation. Our analysis showed that subsequent refolding of the ß-switch results in a more stable binding configuration, although the transition to the native configuration appears to take some time, during which OS1 could dissociate. Our results show that conformational changes in the ß-switch are crucial for successful binding of OS1. Furthermore, we identified several allosteric binding sites of GPIbα that might also interfere with vWF binding, and optimization of the peptide to target these allosteric sites might lead to a more effective inhibitor, as these are not dependent on the ß-switch conformation.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos Cíclicos , Complexo Glicoproteico GPIb-IX de Plaquetas , Ligação Proteica , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Conformação Proteica , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo , Humanos , Sítios de Ligação
2.
Protein Sci ; 32(10): e4775, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37661929

RESUMO

We have applied our advanced computational and experimental methodologies to investigate the complex structure and binding mechanism of a modified Wilms' Tumor 1 (mWT1) protein epitope to the understudied Asian-dominant allele HLA-A*24:02 (HLA-A24) in aqueous solution. We have applied our developed multicanonical molecular dynamics (McMD)-based dynamic docking method to analyze the binding pathway and mechanism, which we verified by comparing the highest probability structures from simulation with our experimentally solved x-ray crystal structure. Subsequent path sampling MD simulations elucidated the atomic details of the binding process and indicated that first an encounter complex is formed between the N-terminal's positive charge of the 9-residue mWT1 fragment peptide and a cluster of negative residues on the surface of HLA-A24, with the major histocompatibility complex (MHC) molecule preferring a predominantly closed conformation. The peptide first binds to this closed MHC conformation, forming an encounter complex, after which the binding site opens due to increased entropy of the binding site, allowing the peptide to bind to form the native complex structure. Further sequence and structure analyses also suggest that although the peptide loading complex would help with stabilizing the MHC molecule, the binding depends in a large part on the intrinsic affinity between the MHC molecule and the antigen peptide. Finally, our computational tools and analyses can be of great benefit to study the binding mechanism of different MHC types to their antigens, where it could also be useful in the development of higher affinity variant peptides and for personalized medicine.

3.
Commun Biol ; 6(1): 349, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997643

RESUMO

The intrinsically disordered region (IDR) of Bim binds to the flexible cryptic site of Bcl-xL, a pro-survival protein involved in cancer progression that plays an important role in initiating apoptosis. However, their binding mechanism has not yet been elucidated. We have applied our dynamic docking protocol, which correctly reproduced both the IDR properties of Bim and the native bound configuration, as well as suggesting other stable/meta-stable binding configurations and revealed the binding pathway. Although the cryptic site of Bcl-xL is predominantly in a closed conformation, initial binding of Bim in an encounter configuration leads to mutual induced-fit binding, where both molecules adapt to each other; Bcl-xL transitions to an open state as Bim folds from a disordered to an α-helical conformation while the two molecules bind each other. Finally, our data provides new avenues to develop novel drugs by targeting newly discovered stable conformations of Bcl-xL.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Proteína bcl-X , Sítios de Ligação , Domínios Proteicos , Proteína 11 Semelhante a Bcl-2/metabolismo
4.
J Phys Chem B ; 125(49): 13376-13384, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34856806

RESUMO

We have applied our advanced multicanonical molecular dynamics (McMD)-based dynamic docking methodology to investigate the binding mechanism of an HIV-1 Nef protein epitope to the Asian-dominant allele human leukocyte antigen (HLA)-A*2402. Even though pMHC complex formation [between a Major histocompatibility complex (MHC) class I molecule, which is encoded by an HLA allele, and an antigen peptide] is one of the fundamental processes of the adaptive human immune response, its binding mechanism has not yet been well studied, partially due to the high allelic variation of HLAs in the population. We have used our developed McMD-based dynamic docking method and have successfully reproduced the native complex structure, which is located near the free energy global minimum. Subsequent path sampling MD simulations elucidated the atomic details of the binding process and indicated that the peptide binding is initially driven by the highly positively charged N-terminus of the peptide that is attracted to the various negatively charged residues on the MHC molecule's surface. Upon nearing the pocket, the second tyrosine residue of the peptide anchors the peptide by strongly binding to the B-site of the MHC molecule via hydrophobic driven interactions, resulting in a very strong bound complex structure. Our methodology can be effectively used to predict the bound complex structures between MHC molecules and their antigens to study their binding mechanism in close detail, which would help with the development of new vaccines against cancers, as well as viral infections such as HIV and COVID-19.


Assuntos
Antígenos HLA-A/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Humanos , Peptídeos
5.
J Chem Inf Model ; 61(4): 1921-1930, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33835817

RESUMO

Quantifying the cell permeability of cyclic peptides is crucial for their rational drug design. However, the reasons remain unclear why a minor chemical modification, such as the difference between Ras inhibitors cyclorasin 9A5 and 9A54, can substantially change a peptide's permeability. To address this question, we performed enhanced sampling simulations of these two 11-mer peptides using the coupled Nosé-Hoover equation (cNH) we recently developed. The present cNH simulations realized temperature fluctuations over a wide range (240-600 K) in a dynamic manner, allowing structural samplings that were well validated by nuclear Overhauser effect measurements. The derived structural ensembles were comprehensively analyzed by all-atom structural clustering, mapping the derived clusters onto principal components (PCs) that characterize the cyclic structure, and calculating cluster-dependent geometric and chemical properties. The planar-open conformation was dominant in aqueous solvent, owing to inclusion of the Trp side chain in the main-chain ring, while the compact-closed conformation, which favors cell permeation due to its compactness and high polarity, was also accessible. Conformation-dependent cell permeability was observed in one of the derived PCs, demonstrating that decreased cell permeability in 9A54 is due to the high free energy barrier separating the two conformations. The origin of the change in free energy surface was determined to be loss of flexibility in the modified residues 2-3, resulting from the increased bulkiness of their side chains. The derived molecular mechanism of cell permeability highlights the significance of complete structural dynamics surveys for accelerating drug development with cyclic peptides.


Assuntos
Peptídeos Cíclicos , Peptídeos , Entropia , Conformação Molecular , Permeabilidade , Conformação Proteica
6.
Methods Mol Biol ; 2266: 187-202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33759128

RESUMO

Multicanonical molecular dynamics (McMD)-based dynamic docking has been applied to predict the native binding configurations for several protein receptors and their ligands. Due to the enhanced sampling capabilities of McMD, it can exhaustively sample bound and unbound ligand configurations, as well as receptor conformations, and thus enables efficient sampling of the conformational and configurational space, not possible using canonical MD simulations. As McMD samples a wide configurational space, extensive analysis is required to study the diverse ensemble consisting of bound and unbound structures. By projecting the reweighted ensemble onto the first two principal axes obtained via principal component analysis of the multicanonical ensemble, the free energy landscape (FEL) can be obtained. Further analysis produces representative structures positioned at the local minima of the FEL, where these structures are then ranked by their free energy. In this chapter, we describe our dynamic docking methodology, which has successfully reproduced the native binding configuration for small compounds, medium-sized compounds, and peptide molecules.


Assuntos
Anticorpos/química , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Peptídeos/química , Proteínas/química , Secretases da Proteína Precursora do Amiloide/química , Anticorpos Monoclonais Humanizados/química , Ácido Aspártico Endopeptidases/química , Quinase 2 Dependente de Ciclina/química , Bases de Dados de Proteínas , Ligantes , Modelos Moleculares , Conformação Molecular , Análise de Componente Principal , Ligação Proteica , Temperatura
7.
Sci Rep ; 11(1): 5046, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658550

RESUMO

We have performed multicanonical molecular dynamics (McMD) based dynamic docking simulations to study and compare the binding mechanism between two medium-sized inhibitors (ABT-737 and WEHI-539) that bind to the cryptic site of Bcl-xL, by exhaustively sampling the conformational and configurational space. Cryptic sites are binding pockets that are transiently formed in the apo state or are induced upon ligand binding. Bcl-xL, a pro-survival protein involved in cancer progression, is known to have a cryptic site, whereby the shape of the pocket depends on which ligand is bound to it. Starting from the apo-structure, we have performed two independent McMD-based dynamic docking simulations for each ligand, and were able to obtain near-native complex structures in both cases. In addition, we have also studied their interactions along their respective binding pathways by using path sampling simulations, which showed that the ligands form stable binding configurations via predominantly hydrophobic interactions. Although the protein started from the apo state, both ligands modulated the pocket in different ways, shifting the conformational preference of the sub-pockets of Bcl-xL. We demonstrate that McMD-based dynamic docking is a powerful tool that can be effectively used to study binding mechanisms involving a cryptic site, where ligand binding requires a large conformational change in the protein to occur.


Assuntos
Compostos de Bifenilo/metabolismo , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Nitrofenóis/metabolismo , Sulfonamidas/metabolismo , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo , Sítios de Ligação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Piperazinas/metabolismo , Ligação Proteica , Conformação Proteica
8.
Proteins ; 89(5): 502-511, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33340163

RESUMO

The cutinase-like enzyme from the thermophile Saccharomonospora viridis AHK190, Cut190, is a good candidate to depolymerize polyethylene terephthalate (PET) efficiently. We previously developed a mutant of Cut190 (S226P/R228S), which we designated as Cut190* that has both increased activity and stability and solved its crystal structure. Recently, we showed that mutation of D250C/E296C on one of the Ca2+ -binding sites resulted in a higher thermal stability while retaining its polyesterase activity. In this study, we solved the crystal structures of Cut190* mutants, Q138A/D250C-E296C/Q123H/N202H, designated as Cut190*SS, and its inactive S176A mutant, Cut190*SS_S176A, at high resolution. The overall structures were similar to those of Cut190* and Cut190*S176A reported previously. As expected, Cys250 and Cys296 were closely located to form a disulfide bond, which would assuredly contribute to increase the stability. Isothermal titration calorimetry experiments and 3D Reference Interaction Site Model calculations showed that the metal-binding properties of the Cut190*SS series were different from those of the Cut190* series. However, our results show that binding of Ca2+ to the weak binding site, site 1, would be retained, enabling Cut190*SS to keep its ability to use Ca2+ to accelerate the conformational change from the closed (inactive) to the open (active) form. While increasing the thermal stability, Cut190*SS could still express its enzymatic function. Even after incubation at 70°C, which corresponds to the glass transition temperature of PET, the enzyme retained its activity well, implying a high applicability for industrial PET depolymerization using Cut190*SS.


Assuntos
Actinobacteria/química , Proteínas de Bactérias/química , Cálcio/química , Hidrolases de Éster Carboxílico/química , Poluentes Ambientais/química , Polietilenotereftalatos/química , Actinobacteria/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Poluentes Ambientais/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Temperatura Alta , Hidrólise , Modelos Moleculares , Mutação , Polietilenotereftalatos/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
9.
J Chem Inf Model ; 60(10): 4867-4880, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32910853

RESUMO

Enhanced conformational sampling, a genetic-algorithm-guided multidimensional virtual-system coupled molecular dynamics, can provide equilibrated conformational distributions of a receptor protein and a flexible ligand at room temperature. The distributions provide not only the most stable but also semistable complex structures and propose a ligand-receptor binding process. This method was applied to a system consisting of a receptor protein, 14-3-3ε, and a flexible peptide, phosphorylated myeloid leukemia factor 1 (pMLF1). The results present comprehensive binding pathways of pMLF1 to 14-3-3ε. We identified four thermodynamically stable clusters of MLF1 on the 14-3-3ε surface and free-energy barriers among some clusters. The most stable cluster includes two high-density spots connected by a narrow corridor. When pMLF1 passes the corridor, a salt-bridge relay (switching) related to the phosphorylated residue of pMLF1 occurs. Conformations in one high-density spot are similar to the experimentally determined complex structure. Three-dimensional distributions of residues in the intermolecular interface rationally explain the binding constant changes resulting from the alanine mutation experiment for the residues. We also performed a simulation of nonphosphorylated peptide and 14-3-3ε, which demonstrated that the complex structure was unstable, suggesting that phosphorylation of the peptide is crucially important for binding to 14-3-3ε.


Assuntos
Proteínas 14-3-3 , Peptídeos , Proteínas 14-3-3/genética , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica
10.
J Chem Theory Comput ; 13(6): 2389-2399, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28482660

RESUMO

In order to predict the accurate binding configuration as well as the binding affinity for a flexible protein receptor and its inhibitor drug, enhanced sampling with multicanonical molecular dynamics (McMD) simulation and thermodynamic integration (TI) were combined as a general drug docking method. CDK2, cyclin-dependent kinase 2, is involved in the cell cycle regulation. Malfunctions in CDK2 can cause tumorigenesis, and thus it is a potential drug target. Here, we performed a long McMD simulation for docking the inhibitor CS3 to CDK2 starting from the unbound structure. Subsequently, a potential binding/unbinding pathway was given from the multicanonical ensemble, and the binding free energy was readily computed by TI along the pathway. Using this combination, the correct binding configuration of CS3 to CDK2 was obtained, and its affinity coincided well with the experimental value.


Assuntos
Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinase 2 Dependente de Ciclina/química , Conformação Proteica , Termodinâmica
11.
J Chem Inf Model ; 56(12): 2445-2456, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28024406

RESUMO

Accurate prediction of binding affinities of drug candidates to their targets remains challenging because of protein flexibility in solution. Conformational flexibility of the ATP-binding site in the CDK2 and ERK2 kinases was identified using molecular dynamics simulations. The binding free energy (ΔG) of twenty-four ATP-competitive inhibitors toward these kinases was assessed using an alchemical free energy perturbation method, MP-CAFEE. However, large calculation errors of 2-3 kcal/mol were observed using this method, where the free energy simulation starts from a single equilibrated conformation. Here, we developed a new ΔG computation method, where the starting structure was set to multiconformations to cover flexibility. The calculation accuracy was successfully improved, especially for larger molecular size compounds, leading to reliable prediction of a broader range of drug candidates. The present study demonstrates that conformational flexibility of interactions between a compound and the glycine-rich loop in the kinases is a key factor in ΔG estimation.


Assuntos
Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Termodinâmica , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Quinase 2 Dependente de Ciclina/química , Desenho de Fármacos , Humanos , Proteína Quinase 1 Ativada por Mitógeno/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/química
12.
Protein Eng Des Sel ; 29(8): 317-325, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27334455

RESUMO

Dyneins are large microtubule motor proteins that convert ATP energy to mechanical power. High-resolution crystal structures of ADP-bound cytoplasmic dynein have revealed the organization of the motor domain, comprising the AAA(+) ring, the linker, the stalk/strut and the C sequence. Recently, the ADP.vanadate-bound structure, which is similar to the ATP hydrolysis transition state, revealed how the structure of dynein changes upon ATP binding. Although both the ADP- and ATP-bound state structures have been resolved, the dynamic properties at the atomic level remain unclear. In this work, we built two models named 'the ADP model' and 'the ATP model', where ADP and ATP are bound to AAA1 in the AAA(+) ring, respectively, to observe the initial procedure of the structural change from the unprimed to the primed state. We performed 200-ns molecular dynamics simulations for both models and compared their structures and dynamics. The motions of the stalk, consisting of a long coiled coil with a microtubule-binding domain, significantly differed between the two models. The elastic properties of the stalk were analyzed and compared with the experimental results.


Assuntos
Dineínas/química , Dineínas/metabolismo , Elasticidade , Simulação de Dinâmica Molecular , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Movimento , Domínios Proteicos
13.
J Mol Biol ; 426(19): 3232-3245, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25058684

RESUMO

Dyneins are large microtubule-based motor complexes that power a range of cellular processes including the transport of organelles, as well as the beating of cilia and flagella. The motor domain is located within the dynein heavy chain and comprises an N-terminal mechanical linker element, a central ring of six AAA+ modules of which four bind or hydrolyze ATP, and a long stalk extending from the AAA+ring with a microtubule-binding domain (MTBD) at its tip. A crucial mechanism underlying the motile activity of cytoskeletal motor proteins is precise coupling between the ATPase and track-binding activities. In dynein, a stalk region consisting of a long (~15nm) antiparallel coiled coil separates these two activities, which must facilitate communication between them. This communication is mediated by a small degree of helix sliding in the coiled coil. However, no high-resolution structure is available of the entire stalk region including the MTBD. Here, we have reported the structure of the entire stalk region of mouse cytoplasmic dynein in a weak microtubule-binding state, which was determined using X-ray crystallography, and have compared it with the dynein motor domain from Dictyostelium discoideum in a strong microtubule-binding state and with a mouse MTBD with its distal portion of the coiled coil fused to seryl-tRNA synthetase from Thermus thermophilus. Our results strongly support the helix-sliding model based on the complete structure of the dynein stalk with a different form of coiled-coil packing. We also propose a plausible mechanism of helix sliding together with further analysis using molecular dynamics simulations. Our results present the importance of conserved proline residues for an elastic motion of stalk coiled coil and imply the manner of change between high-affinity state and low-affinity state of MTBD.


Assuntos
Dineínas/química , Dineínas/ultraestrutura , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Dictyostelium , Camundongos , Microtúbulos/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Thermus thermophilus/enzimologia , Thermus thermophilus/metabolismo
14.
PLoS One ; 9(6): e98554, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24901533

RESUMO

MutL is a multi-domain protein comprising an N-terminal ATPase domain (NTD) and C-terminal dimerization domain (CTD), connected with flexible linker regions, that plays a key role in DNA mismatch repair. To expand understanding of the regulation mechanism underlying MutL endonuclease activity, our NMR-based study investigated interactions between the CTD of MutL, derived from the hyperthermophilic bacterium Aquifex aeolicus (aqMutL-CTD), and putative binding molecules. Chemical shift perturbation analysis with the model structure of aqMutL-CTD and circular dichroism results revealed that tight Zn(2+) binding increased thermal stability without changing secondary structures to function at high temperatures. Peak intensity analysis exploiting the paramagnetic relaxation enhancement effect indicated the binding site for Mn(2+), which shared binding sites for Zn(2+). The coexistence of these two metal ions appears to be important for the function of MutL. Chemical shift perturbation analysis revealed a novel ATP binding site in aqMutL-CTD. A docking simulation incorporating the chemical shift perturbation data provided a putative scheme for the intermolecular interactions between aqMutL-CTD and ATP. We proposed a simple and understandable mechanical model for the regulation of MutL endonuclease activity in MMR based on the relative concentrations of ATP and CTD through ATP binding-regulated interdomain interactions between CTD and NTD.


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Endonucleases/química , Íons/química , Metais/química , Ressonância Magnética Nuclear Biomolecular , Domínios e Motivos de Interação entre Proteínas , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Endonucleases/metabolismo , Íons/metabolismo , Metais/metabolismo , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Estabilidade Proteica , Soluções , Termodinâmica
15.
J Comput Chem ; 32(7): 1286-97, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21425286

RESUMO

Trivial trajectory parallelization of multicanonical molecular dynamics (TTP-McMD) explores the conformational space of a biological system with multiple short runs of McMD starting from various initial structures. This method simply connects (i.e., trivially parallelizes) the short trajectories and generates a long trajectory. First, we theoretically prove that the simple trajectory connection satisfies a detailed balance automatically. Thus, the resultant long trajectory is regarded as a single multicanonical trajectory. Second, we applied TTP-McMD to an alanine decapeptide with an all-atom model in explicit water to compute a free-energy landscape. The theory imposes two requirements on the multiple trajectories. We have demonstrated that TTP-McMD naturally satisfies the requirements. The TTP-McMD produces the free-energy landscape considerably faster than a single-run McMD does. We quantitatively showed that the accuracy of the computed landscape increases with increasing the number of multiple runs. Generally, the free-energy landscape of a large biological system is unknown a priori. The current method is suitable for conformational sampling of such a large system to reduce the waiting time to obtain a canonical ensemble statistically reliable.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos/química , Água/química
16.
J Mol Biol ; 385(1): 188-99, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18977231

RESUMO

Peroxisome proliferator-activated receptor (PPAR) gamma is a nuclear receptor that regulates lipid homeostasis, and several fatty acid metabolites have been identified as PPARgamma ligands. Here, we present four crystal structures of the PPARgamma ligand binding domain (LBD) covalently bound to endogenous fatty acids via a unique cysteine, which is reportedly critical for receptor activation. The structure analyses of the LBD complexed with 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) revealed that the covalent binding of 15d-PGJ(2) induced conformational changes in the loop region following helix H2', and rearrangements of the side-chain network around the created covalent bond in the LBD. Point mutations of these repositioned residues on the loop and helix H3 almost completely abolished PPARgamma activation by 15d-PGJ(2), indicating that the observed structural alteration may be crucial for PPARgamma activation by the endogenous fatty acid. To address the issue of partial agonism of endogenous PPARgamma ligands, we took advantage of a series of oxidized eicosatetraenoic acids (oxoETEs) as covalently bound ligands to PPARgamma. Despite similar structural and chemical properties, these fatty acids exhibited distinct degrees of transcriptional activity. Crystallographic studies, using two of the oxoETE/PPARgamma LBD complexes, revealed that transcriptional strength of each oxoETE is associated with the difference in the loop conformation, rather than the interaction between each ligand and helix H12. These results suggest that the loop conformation may be responsible for the modulation of PPARgamma activity. Based on these results, we identified novel agonists covalently bound to PPARgamma by in silico screening and a cell-based assay. Our crystallographic study of LBD complexed with nitro-233 demonstrated that the expected covalent bond is indeed formed between this newly identified agonist and the cysteine. This study presents the structural basis for the activation and modulation mechanism of PPARgamma through covalent modification with endogenous fatty acids.


Assuntos
Ácidos Graxos/metabolismo , PPAR gama/química , PPAR gama/metabolismo , Animais , Ácido Araquidônico/química , Células COS , Chlorocebus aethiops , Cristalografia por Raios X , Humanos , Cetonas/química , Ligantes , Modelos Moleculares , Oxirredução , PPAR gama/agonistas , Prostaglandina D2/análogos & derivados , Prostaglandina D2/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
17.
J Physiol Sci ; 58(7): 459-70, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19032804

RESUMO

A variety of compounds with different chemical properties directly interact with the cardiac repolarizing K(+) channel encoded by the human ether-a-go-go-related gene (hERG). This causes acquired forms of QT prolongation, which can result in lethal cardiac arrhythmias including torsades de pointes one of the most serious adverse effects of various therapeutic agents. Prediction of this phenomenon will improve the safety of pharmacological therapy and also facilitate the process of drug development. Here we propose a strategy for the development of an in silico system to predict the potency of chemical compounds to block hERG. The system consists of two sequential processes. The first process is a ligand-based prediction to estimate half-maximal concentrations for the block of compounds inhibiting hERG current using the relationship between chemical features and activities of compounds. The second process is a protein-based prediction that comprises homology modeling of hERG, docking simulation of chemical-channel interaction, analysis of the shape of the channel pore cavity, and Brownian dynamics simulation to estimate hERG currents in the presence and absence of chemical blockers. Since each process is a combination of various calculations, the criterion for assessment at each calculation and the strategy to integrate these steps are significant for the construction of the system to predict a chemical's block of hERG current and also to predict the risk of inducing cardiac arrhythmias from the chemical information. The principles and criteria of elemental computations along this strategy are described.


Assuntos
Simulação por Computador , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Modelos Biológicos , Modelos Moleculares , Bloqueadores dos Canais de Potássio/farmacologia , Potássio/metabolismo , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/metabolismo , Relação Dose-Resposta a Droga , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Potenciais da Membrana , Estrutura Molecular , Bloqueadores dos Canais de Potássio/efeitos adversos , Bloqueadores dos Canais de Potássio/química , Conformação Proteica , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes , Medição de Risco , Biologia de Sistemas
18.
J Phys Chem B ; 111(19): 5351-6, 2007 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-17439167

RESUMO

The free-energy landscape of the Alzheimer beta-amyloid peptide Abeta(12-36) in a 40% (v/v) 2,2,2-trifluoroethanol (TFE)/water solution was determined by using multicanonical molecular dynamics simulations. Simulations using this enhanced conformational sampling technique were initiated from a random unfolded polypeptide conformation. Our simulations reliably folded the peptide to the experimental NMR structure, which consists of two linked helices. The shape of the free energy landscape for folding was found to be strongly dependent on temperature: Above 325 K, the overall shape was funnel-like, with the bottom of the funnel coinciding exactly with the NMR structure. Below 325 K, on the other hand, the landscape became increasingly rugged, with the emergence of new conformational clusters connected by low free-energy pathways. Finally, our simulations reveal that water and TFE solvate the polypeptide in different ways: The hydrogen bond formation between TFE and Abeta was enhanced with decreasing temperature, while that between water and Abeta was depressed.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Politetrafluoretileno/química , Dobramento de Proteína , Temperatura , Água/química , Modelos Moleculares , Conformação Proteica , Termodinâmica
19.
Channels (Austin) ; 1(3): 198-208, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18690032

RESUMO

Chemicals and toxins are useful tools to elucidate the structure-function relationship of various proteins including ion channels. The HERG channel is blocked by many compounds and this may cause life-threatening cardiac arrhythmia. Besides block, some chemicals such as the class III anti-arrhythmic agent nifekalant stimulate HERG at low potentials by shifting its activation curve towards hyperpolarizing voltages. This is called "facilitation". Here, we report mutations and simulations analyzing the association between nifekalant and channel pore residues for block and facilitation. Alanine-scanning mutagenesis was performed in the pore region of HERG. The mutations at the base of the pore helix (T623A), the selectivity filter (V625A) and the S6 helix (G648A, Y652A and F656A) abolished and S624A attenuated both block and facilitation induced by the drug. On the other hand, the mutation of other residues caused either an increase or a decrease in nifekalant-induced facilitation without affecting block. An open-state homology model of the HERG pore suggested that T623, S624, Y652 and F656 faced the central cavity, and were positioned within geometrical range for the drug to be able to interact with all of them at the same time. Of these, S649 was the only polar residue located within possible interaction distance from the drug held in its blocking position. Further mutations and flexible-docking simulations suggest that the size, but not the polarity, of the side chain at S649 is critical for drug induced facilitation.


Assuntos
Antiarrítmicos/farmacologia , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Mutação , Bloqueadores dos Canais de Potássio/farmacologia , Potássio/metabolismo , Pirimidinonas/farmacologia , Animais , Simulação por Computador , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Técnicas de Transferência de Genes , Humanos , Potenciais da Membrana , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oócitos , Conformação Proteica , Fatores de Tempo , Xenopus laevis
20.
J Biol Chem ; 280(14): 14145-53, 2005 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15695504

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARgamma) functions in various biological processes, including macrophage and adipocyte differentiation. Several natural lipid metabolites have been shown to activate PPARgamma. Here, we report that some PPARgamma ligands, including 15-deoxy-Delta12,14-prostaglandin J2, covalently bind to a cysteine residue in the PPARgamma ligand binding pocket through a Michael addition reaction by an alpha,beta-unsaturated ketone. Using rhodamine-maleimide as well as mass spectroscopy, we showed that the binding of these ligands is covalent and irreversible. Consistently, mutation at the cysteine residue abolished abilities of these ligands to activate PPARgamma, but not of BRL49653, a non-covalent synthetic agonist, indicating that covalent binding of the alpha,beta-unsaturated ketone in the natural ligands was required for their transcriptional activities. Screening of lipid metabolites containing the alpha,beta-unsaturated ketone revealed that several other oxidized metabolites of hydroxyeicosatetraenoic acid, hydroxyeicosadecaenoic acid, and prostaglandins can also function as novel covalent ligands for PPARgamma. We propose that PPARgamma senses oxidation of fatty acids by recognizing such an alpha,beta-unsaturated ketone as a common moiety.


Assuntos
Cetonas/química , Cetonas/metabolismo , PPAR gama/metabolismo , Prostaglandina D2/análogos & derivados , Animais , Linhagem Celular , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Oxirredução , PPAR gama/genética , Prostaglandina D2/química , Prostaglandina D2/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA