Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36232486

RESUMO

Drug-loaded nanocarriers (NCs) are new systems that can greatly improve the delivery and targeting of drugs to specific tissues and organs. In our work, a PPAR-γ agonist loaded into polymeric NCs was prepared, stabilized by spray-drying, and tested in vitro, ex vivo, and in vivo (animal models) to provide a safe formulation for optical anti-inflammatory treatments. The NCs were shown to be well tolerated, and no signs of irritancy or alterations of the eye properties were detected by the in vitro HET-CAM test and in vivo Draize test. Furthermore, no signs of cytotoxicity were found in the NC formulations on retinoblastoma cells (Y-79) analyzed using the alamarBlue assay, and the transmittance experiments evidenced good corneal transparency with the formulations tested. The ocular anti-inflammatory study confirmed the significant prevention efficacy using the NCs, and these systems did not affect the corneal tissue structure. Moreover, the animal corneal structure treated with the NCs was analyzed using X-ray diffraction using synchrotron light. Small-angle X-ray scattering (SAXS) analysis did not show a significant difference in corneal collagen interfibrillar spacing after the treatment with freshly prepared NCs or NCs after the drying process compared to the corresponding negative control when inflammation was induced. Considering these results, the PPAR-γ agonist NCs could be a safe and effective alternative for the treatment of inflammatory ocular processes.


Assuntos
Oftalmopatias , Receptores Ativados por Proliferador de Peroxissomo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Córnea , Oftalmopatias/tratamento farmacológico , Espalhamento a Baixo Ângulo , Difração de Raios X
2.
PLoS One ; 15(3): e0230022, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32143211

RESUMO

The objective of this study was to regulate the cytotoxicity of cisplatin (cisPt) minimizing its adverse effects. For this purpose, the lowest cisPt concentration needed to obtain a significant positive response in cutaneous squamous cell carcinoma (cSCC) was explored. Two adjuvant agents as gold nanoparticles (AuNP) and chelating tricine were tested as enhancers in cisPt treatment. Effectiveness of all treatments was assessed by means of biochemical techniques, which offer quantitative data, as well as two microscopy-based techniques that provided qualitative cell imaging. The present work confirms the effectiveness of free cisplatin at very low concentrations. In order to enhance its effectiveness while the side effects were probably diminished, cisPt 3.5 µM was administered with AuNP 2.5 mM, showing an effectiveness practically equal to that observed with free cisPt. However, the second treatment investigated, based on cisPt 3.5 µM combined with tricine 50 mM, enhanced drug effectiveness, increasing the percentage of cells dying by apoptosis. This treatment was even better in terms of cell damage than free cisPt at 15 µM. Images obtained by TEM and cryo-SXT confirmed these results, since a notable number of apoptotic bodies were detected when cisPt was combined with tricine. Thus, tricine was clearly a better adjuvant for cisPt treatments.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cisplatino/química , Portadores de Fármacos/química , Antineoplásicos/química , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Tamanho Celular/efeitos dos fármacos , Quelantes/química , Cisplatino/farmacologia , Glicina/análogos & derivados , Glicina/química , Glicina/toxicidade , Ouro/química , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Microscopia Eletrônica de Transmissão , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
3.
Elife ; 92020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32151315

RESUMO

Microtubules (MTs) are hollow cylinders made of tubulin, a GTPase responsible for essential functions during cell growth and division, and thus, key target for anti-tumor drugs. In MTs, GTP hydrolysis triggers structural changes in the lattice, which are responsible for interaction with regulatory factors. The stabilizing GTP-cap is a hallmark of MTs and the mechanism of the chemical-structural link between the GTP hydrolysis site and the MT lattice is a matter of debate. We have analyzed the structure of tubulin and MTs assembled in the presence of fluoride salts that mimic the GTP-bound and GDP•Pi transition states. Our results challenge current models because tubulin does not change axial length upon GTP hydrolysis. Moreover, analysis of the structure of MTs assembled in the presence of several nucleotide analogues and of taxol allows us to propose that previously described lattice expansion could be a post-hydrolysis stage involved in Pi release.


Assuntos
Microtúbulos/química , Modelos Moleculares , Conformação Molecular , Microscopia Crioeletrônica , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/química , Ligação de Hidrogênio , Microtúbulos/metabolismo , Relação Estrutura-Atividade , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
4.
J Chem Phys ; 150(12): 124902, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30927900

RESUMO

It is well-accepted that hydration water is crucial for the structure, dynamics, and function of proteins. However, the exact role of water for the motions and functions of proteins is still debated. Experiments have shown that protein and water dynamics are strongly coupled but with water motions occurring on a considerably faster time scale (the so-called slaving behavior). On the other hand, water also reduces the conformational entropy of proteins and thereby acts as a plasticizer of them. In this work, we analyze the dynamics (using broadband dielectric spectroscopy) of some specific non-biological water solutions in a broad concentration range to elucidate the role of water in the dynamics of the solutes. Our results demonstrate that at low water concentrations (less than 5 wt. %), the plasticization phenomenon prevails for all the materials analyzed. However, at higher water concentrations, two different scenarios can be observed: the slaving phenomenon or plasticization, depending on the solute analyzed. These results generalize the slaving phenomenon to some, but not all, non-biological solutions and allow us to analyze the key factors for observing the slaving behavior in protein solutions as well as to reshaping the slaving concept.


Assuntos
Proteínas/química , Água/química , Dextranos/química , Movimento (Física) , Oligopeptídeos/química , Povidona/química
5.
Skin Pharmacol Physiol ; 29(4): 169-77, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379378

RESUMO

AIM: In this work the effect of infrared (IR) radiation, at temperatures between 25 and 30°C, on the formation of free radicals (FRs) in the skin is studied. Additionally, the influence of IR radiation at high temperatures in the degradation of skin collagen is evaluated. In both experiments the protective effect against IR radiation of phospholipid nanostructures (bicosomes) incorporating ß-carotene (Bcb) is also evaluated. METHODS: The formation of FRs in skin under IR exposure was measured near physiological temperatures (25-30°C) using 5,5-dimethyl-1-pyrroline-N-oxide spin trap and electron paramagnetic resonance (EPR) spectroscopy. The study of the collagen structure was performed by small-angle X-ray scattering using synchrotron radiation. RESULTS: EPR results showed an increase in the hydroxyl radical in the irradiated skin compared to the native skin. The skin collagen was degraded by IR exposure at high temperatures of approximately 65°C. The treatment with Bcb reduced the formation of FRs and kept the structure of collagen. CONCLUSIONS: The formation of FRs by IR radiation does not depend on the increase of skin temperature. The decrease of FRs and the preservation of collagen fibers in the skin treated with Bcb indicate the potential of this lipid system to protect skin under IR exposure.


Assuntos
Raios Infravermelhos/efeitos adversos , Nanoestruturas/administração & dosagem , Fosfolipídeos/administração & dosagem , Pele/efeitos dos fármacos , Pele/efeitos da radiação , beta Caroteno/administração & dosagem , Colágeno/efeitos dos fármacos , Colágeno/metabolismo , Colágeno/efeitos da radiação , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Radicais Livres/antagonistas & inibidores , Radicais Livres/metabolismo , Humanos , Nanoestruturas/química , Fosfolipídeos/química , Pele/metabolismo
6.
J Cataract Refract Surg ; 42(2): 302-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27026456

RESUMO

PURPOSE: To use a well-established organ culture model to investigate the effects of corneal stromal stem cells on the optical and biomechanical properties of corneal wounds after laser in situ keratomileusis (LASIK)-like flap creation. SETTING: School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, United Kingdom. DESIGN: Experimental study. METHODS: The LASIK-like flaps were produced in sheep corneas. The flap beds were treated with corneal stromal stem cells and were then replaced and allowed to heal for different periods of up to 3 weeks in organ culture. The optical transmission of the cornea, the force required to detach the flap, and the presence of myofibroblasts near the flap bed were measured. RESULTS: Corneal stromal stem cell-treated flap beds were statistically significantly more transparent after 3 weeks in culture than the untreated controls. At 3 weeks, the mean force necessary to detach the flap was more than twice the force required for the respective control samples. Concurrently, there were 44% activated cells immediately below the flap margin of the controls compared with 29% in the same region of the corneal stromal stem cell-treated flaps. CONCLUSIONS: In this system, the presence of corneal stromal stem cells at the wound margin significantly increased the adherence of LASIK-like flaps while maintaining corneal transparency. It is postulated that this is achieved by the deposition of extracellular connective tissue similar to that found in the normal cornea and by the paucity of activated keratocytes (myofibroblasts), which are known to scatter a significant amount of the incident light. FINANCIAL DISCLOSURE: No author has a financial or proprietary interest in any material or method mentioned.


Assuntos
Córnea/cirurgia , Substância Própria/citologia , Ceratomileuse Assistida por Excimer Laser In Situ , Lasers de Excimer , Transplante de Células-Tronco , Células-Tronco/fisiologia , Cicatrização/fisiologia , Actinas/metabolismo , Animais , Córnea/fisiologia , Paquimetria Corneana , Humanos , Microscopia de Fluorescência , Técnicas de Cultura de Órgãos , Ovinos , Retalhos Cirúrgicos/fisiologia , Aderências Teciduais
7.
Biophys J ; 109(8): 1592-9, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26488650

RESUMO

The cornea is the primary refractive lens in the eye and transmits >90% of incident visible light. It has been suggested that the development of postoperative corneal haze could be due to an increase in light scattering from activated corneal stromal cells. Quiescent keratocytes are thought to produce crystallins that match the refractive index of their cytoplasm to the surrounding extracellular material, reducing the amount of light scattering. To test this, we measured the refractive index (RI) of bovine corneal stromal cells, using quantitative phase imaging of live cells in vitro, together with confocal microscopy. The RI of quiescent keratocytes (RI = 1.381 ± 0.004) matched the surrounding matrix, thus supporting the hypothesis that keratocyte cytoplasm does not scatter light in the normal cornea. We also observed that the RI drops after keratocyte activation (RI = 1.365 ± 0.003), leading to a mismatch with the surrounding intercellular matrix. Theoretical scattering models showed that this mismatch would reduce light transmission in the cornea. We conclude that corneal transparency depends on the matching of refractive indices between quiescent keratocytes and the surrounding tissue, and that after surgery or wounding, the resulting RI mismatch between the activated cells and their surrounds significantly contributes to light scattering.


Assuntos
Substância Própria/fisiologia , Substância Própria/efeitos da radiação , Imagem Óptica/métodos , Espalhamento de Radiação , Animais , Bovinos , Tamanho Celular , Células Cultivadas , Ceratócitos da Córnea/fisiologia , Ceratócitos da Córnea/efeitos da radiação , Substância Própria/citologia , Citoplasma/fisiologia , Citoplasma/efeitos da radiação , Microscopia Confocal , Modelos Biológicos , Células Estromais/fisiologia
8.
PLoS One ; 8(7): e68166, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23861866

RESUMO

PURPOSE: To quantify long-term changes in stromal collagen ultrastructure following penetrating keratoplasty (PK), and evaluate their possible implications for corneal biomechanics. METHODS: A pair of 16 mm post-mortem corneo-scleral buttons was obtained from a patient receiving bilateral penetrating keratoplasty 12 (left)/28 (right) years previously. Small-angle x-ray scattering quantified collagen fibril spacing, diameter and spatial order at 0.5 mm or 0.25 mm intervals along linear scans across the graft margin. Corresponding control data was collected from two corneo-scleral buttons with no history of refractive surgery. Wide-angle x-ray scattering quantified collagen fibril orientation at 0.25 mm (horizontal)×0.25 mm (vertical) intervals across both PK specimens. Quantification of orientation changes in the graft margin were verified by equivalent analysis of data from a 13 year post-operative right PK specimen obtained from a second patient in a previous study, and comparison made with new and published data from normal corneas. RESULTS: Marked changes to normal fibril alignment, in favour of tangentially oriented collagen, were observed around the entire graft margin in all PK specimens. The total number of meridional fibrils in the wound margin was observed to decrease by up to 40%, with the number of tangentially oriented fibrils increasing by up to 46%. As a result, in some locations the number of fibrils aligned parallel to the wound outnumbered those spanning it by up to five times. Localised increases in fibril spacing and diameter, with an accompanying reduction in matrix order, were also evident. CONCLUSIONS: Abnormal collagen fibril size and spatial order within the PK graft margin are indicative of incomplete stromal wound remodelling and the long term persistence of fibrotic scar tissue. Lasting changes in collagen fibril orientation in and around PK wounds may alter corneal biomechanics and compromise the integrity of the graft-host interface in the long term.


Assuntos
Colágeno/química , Córnea/química , Córnea/citologia , Idoso , Córnea/cirurgia , Substância Própria/química , Substância Própria/citologia , Humanos , Ceratoplastia Penetrante , Pessoa de Meia-Idade , Doadores de Tecidos , Difração de Raios X
9.
PLoS One ; 8(1): e52860, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349690

RESUMO

PURPOSE: To examine the effect of riboflavin/UVA corneal crosslinking on stromal ultrastructure and hydrodynamic behaviour. METHODS: One hundred and seventeen enucleated ungulate eyes (112 pig and 5 sheep) and 3 pairs of rabbit eyes, with corneal epithelium removed, were divided into four treatment groups: Group 1 (28 pig, 2 sheep and 3 rabbits) were untreated; Group 2 (24 pig) were exposed to UVA light (3.04 mW/cm(2)) for 30 minutes and Group 3 (29 pig) and Group 4 (31 pig, 3 sheep and 3 rabbits) had riboflavin eye drops applied to the corneal surface every 5 minutes for 35 minutes. Five minutes after the initial riboflavin instillation, the corneas in Group 4 experienced a 30 minute exposure to UVA light (3.04 mW/cm(2)). X-ray scattering was used to obtain measurements of collagen interfibrillar spacing, spatial order, fibril diameter, D-periodicity and intermolecular spacing throughout the whole tissue thickness and as a function of tissue depth in the treated and untreated corneas. The effect of each treatment on the hydrodynamic behaviour of the cornea (its ability to swell in saline solution) and its resistance to enzymatic digestion were assessed using in vitro laboratory techniques. RESULTS: Corneal thickness decreased significantly following riboflavin application (p<0.01) and also to a lesser extent after UVA exposure (p<0.05). With the exception of the spatial order factor, which was higher in Group 4 than Group 1 (p<0.01), all other measured collagen parameters were unaltered by cross-linking, even within the most anterior 300 microns of the cornea. The cross-linking treatment had no effect on the hydrodynamic behaviour of the cornea but did cause a significant increase in its resistance to enzymatic digestion. CONCLUSIONS: It seems likely that cross-links formed during riboflavin/UVA therapy occur predominantly at the collagen fibril surface and in the protein network surrounding the collagen.


Assuntos
Colágeno/química , Substância Própria/efeitos dos fármacos , Substância Própria/efeitos da radiação , Hidrodinâmica , Riboflavina/farmacologia , Raios Ultravioleta , Animais , Colágeno/metabolismo , Substância Própria/metabolismo , Substância Própria/ultraestrutura , Enzimas/metabolismo , Técnicas In Vitro , Coelhos , Ovinos , Suínos , Difração de Raios X
10.
Invest Ophthalmol Vis Sci ; 53(6): 2786-95, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22467580

RESUMO

PURPOSE: The mouse has become an important wound healing model with which to study corneal fibrosis, a frequent complication of refractive surgery. The aim of the current study was to quantify changes in stromal ultrastructure and light scatter that characterize fibrosis in mouse corneal debridement wounds. METHODS: Epithelial debridement wounds, with and without removal of basement membrane, were produced in C57BL/6 mice. Corneal opacity was measured using optical coherence tomography, and collagen diameter and matrix order were quantified by x-ray scattering. Electron microscopy was used to visualize proteoglycans. Quantitative PCR (Q-PCR) measured mRNA transcript levels for several quiescent and fibrotic markers. RESULTS: Epithelial debridement without basement membrane disruption produced a significant increase in matrix disorder at 8 weeks, but minimal corneal opacity. In contrast, basement membrane penetration led to increases in light scatter, matrix disorder, and collagen diameter, accompanied by the appearance of abnormally large proteoglycans in the subepithelial stroma. This group also demonstrated upregulation of several quiescent and fibrotic markers 2 to 4 weeks after wounding. CONCLUSIONS: Fibrotic corneal wound healing in mice involves extensive changes to collagen and proteoglycan ultrastructure, consistent with deposition of opaque scar tissue. Epithelial basement membrane penetration is a deciding factor determining the degree of ultrastructural changes and resulting opacity.


Assuntos
Colágeno/ultraestrutura , Córnea/cirurgia , Desbridamento/efeitos adversos , Espalhamento de Radiação , Animais , Membrana Basal/patologia , Membrana Basal/cirurgia , Membrana Basal/ultraestrutura , Biomarcadores/análise , Córnea/patologia , Córnea/ultraestrutura , Lesões da Córnea , Opacidade da Córnea/patologia , Substância Própria/fisiopatologia , Substância Própria/ultraestrutura , Epitélio Corneano/lesões , Epitélio Corneano/metabolismo , Epitélio Corneano/patologia , Epitélio Corneano/ultraestrutura , Fibrose , Luz , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , RNA/análise , RNA/biossíntese , RNA Mitocondrial , Tomografia de Coerência Óptica , Cicatrização/fisiologia
11.
J Cataract Refract Surg ; 37(1): 166-72, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21183111

RESUMO

PURPOSE: To evaluate 3 approaches, both cellular and acellular, to improve the healing of laser in situ keratomileusis flaps in bovine corneas. SETTING: School of Optometry and Vision Sciences and Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Cardiff, United Kingdom. DESIGN: Experimental study. METHODS: Laser in situ keratomileusis-like flaps were created in bovine corneas, and the flap bed was treated with tumor necrosis factor-α, interleukin-1α, Fas ligand, transforming growth factor-ß(1), or activated stromal fibroblasts. In separate experiments, flaps were created and repositioned. The corneas were then crosslinked using ultraviolet-A (UVA) light. All samples were then placed in organ culture for up to 4 weeks. Untreated samples acted as controls. RESULTS: All treatments increased the adherence of the stromal flap. This was achieved at the expense of corneal clarity except in the case of crosslinking (CXL). In this case, the flap adhesion force immediately increased while the cornea remained clear. The force then decreased gradually during organ culture, although it remained at twice the level of the control corneas after 3 weeks in culture. CONCLUSIONS: The results suggest that riboflavin-UVA CXL is a hopeful approach for increasing the adherence strength of corneal flaps while keeping the cornea clear. Further studies are necessary to confirm the durability of the strengthening effect and to exclude serious late complications. FINANCIAL DISCLOSURE: No author has a financial or proprietary interest in any material or method mentioned.


Assuntos
Córnea/fisiologia , Reagentes de Ligações Cruzadas/farmacologia , Citocinas/farmacologia , Fibroblastos/fisiologia , Ceratomileuse Assistida por Excimer Laser In Situ , Retalhos Cirúrgicos , Cicatrização/fisiologia , Animais , Bovinos , Contagem de Células , Córnea/efeitos dos fármacos , Córnea/cirurgia , Substância Própria/citologia , Proteína Ligante Fas/farmacologia , Imuno-Histoquímica , Interleucina-1alfa/farmacologia , Lasers de Excimer , Modelos Biológicos , Técnicas de Cultura de Órgãos , Fármacos Fotossensibilizantes/farmacologia , Aderências Teciduais , Fator de Crescimento Transformador beta1/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Raios Ultravioleta
13.
Mol Vis ; 15: 378-85, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19234631

RESUMO

PURPOSE: Structural changes are well known to occur in the cornea after injury. The aim of this study was to investigate collagen orientation changes in the cornea during a short-term wound healing process. METHODS: Seven bovine corneas were injured using a penetrating 5 mm biopsy punch and were subsequently organ cultured for up to two weeks. Six uninjured corneas acted as controls. The trephine wounded samples were snap frozen in liquid nitrogen either immediately after injury (0 h) or after 1 or 2 weeks in culture. Control/uninjured samples were snap frozen on arrival (0 h) or after 1 or 2 weeks in culture. Wide angle X-ray diffraction data were collected from each cornea at the UK Synchrotron Radiation Source or at the European Synchrotron Radiation Facility. Data analysis revealed information about collagen orientation and distribution in the corneal stroma during wound healing. For histology, two trephine wounded corneas at 0 h and 1 week and one control/uninjured cornea at 0 h were fixed in 10% neutral buffered formalin and processed for wax embedding. Wax sections were subsequently counterstained with haematoxylin and eosin to observe tissue morphology and the time course of complete re-epithelialization. RESULTS: Immediately after injury, collagen organization was altered in a small area inside the wound but remained similar to the control/uninjured sample in the remainder of the tissue. After one week, the trephine wounded corneas showed complete re-epithelialization and evidence of swelling while collagen adopted a radial arrangement inside and outside the wound. CONCLUSIONS: Remarkable changes in collagen fibril orientation were observed in trephine wounded corneas. Orientation changes immediately after wounding are likely to be due to the mechanical deformation of the tissue during the wounding process. However, tissue swelling and changes in collagen orientation at later stages probably reflect the processes of tissue repair. These differences will determine corneal stability and strength following trauma and possibly refractive surgery.


Assuntos
Córnea/patologia , Lesões da Córnea , Colágenos Fibrilares/ultraestrutura , Cicatrização , Animais , Bovinos , Córnea/metabolismo , Técnicas de Cultura de Órgãos , Fatores de Tempo , Ferimentos Penetrantes/metabolismo , Ferimentos Penetrantes/patologia , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA