Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 127(7): 877-892, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32564710

RESUMO

RATIONALE: Treatment efficacy for diabetes mellitus is largely determined by assessment of HbA1c (glycated hemoglobin A1c) levels, which poorly reflects direct glucose variation. People with prediabetes and diabetes mellitus spend >50% of their time outside the optimal glucose range. These glucose variations, termed transient intermittent hyperglycemia (TIH), appear to be an independent risk factor for cardiovascular disease, but the pathological basis for this association is unclear. OBJECTIVE: To determine whether TIH per se promotes myelopoiesis to produce more monocytes and consequently adversely affects atherosclerosis. METHODS AND RESULTS: To create a mouse model of TIH, we administered 4 bolus doses of glucose at 2-hour intervals intraperitoneally once to WT (wild type) or once weekly to atherosclerotic prone mice. TIH accelerated atherogenesis without an increase in plasma cholesterol, seen in traditional models of diabetes mellitus. TIH promoted myelopoiesis in the bone marrow, resulting in increased circulating monocytes, particularly the inflammatory Ly6-Chi subset, and neutrophils. Hematopoietic-restricted deletion of S100a9, S100a8, or its cognate receptor Rage prevented monocytosis. Mechanistically, glucose uptake via GLUT (glucose transporter)-1 and enhanced glycolysis in neutrophils promoted the production of S100A8/A9. Myeloid-restricted deletion of Slc2a1 (GLUT-1) or pharmacological inhibition of S100A8/A9 reduced TIH-induced myelopoiesis and atherosclerosis. CONCLUSIONS: Together, these data provide a mechanism as to how TIH, prevalent in people with impaired glucose metabolism, contributes to cardiovascular disease. These findings provide a rationale for continual glucose control in these patients and may also suggest that strategies aimed at targeting the S100A8/A9-RAGE (receptor for advanced glycation end products) axis could represent a viable approach to protect the vulnerable blood vessels in diabetes mellitus. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Aterosclerose/etiologia , Glicemia/metabolismo , Hiperglicemia/complicações , Monócitos/metabolismo , Mielopoese , Neutrófilos/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores/sangue , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Glicólise , Hiperglicemia/sangue , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Monócitos/patologia , Neutrófilos/patologia , Placa Aterosclerótica , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais
2.
Am J Physiol Endocrinol Metab ; 319(1): E203-E216, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32516027

RESUMO

Studies suggest the gut microbiota contributes to the development of obesity and metabolic syndrome. Exercise alters microbiota composition and diversity and is protective of these maladies. We tested whether the protective metabolic effects of exercise are mediated through fecal components through assessment of body composition and metabolism in recipients of fecal microbiota transplantation (FMT) from exercise-trained (ET) mice fed normal or high-energy diets. Donor C57BL/6J mice were fed a chow or high-fat, high-sucrose diet (HFHS) for 4 wk to induce obesity and glucose intolerance. Mice were divided into sedentary (Sed) or ET groups (6 wk treadmill-based ET) while maintaining their diets, resulting in four donor groups: chow sedentary (NC-Sed) or ET (NC-ET) and HFHS sedentary (HFHS-Sed) or ET (HFHS-ET). Chow-fed recipient mice were gavaged with feces from the respective donor groups weekly, creating four groups (NC-Sed-R, NC-ET-R, HFHS-Sed-R, HFHS-ET-R), and body composition and metabolism were assessed. The HFHS diet led to glucose intolerance and obesity in the donors, whereas exercise training (ET) restrained adiposity and improved glucose tolerance. No donor group FMT altered recipient body composition. Despite unaltered adiposity, glucose levels were disrupted when challenged in mice receiving feces from HFHS-fed donors, irrespective of donor-ET status, with a decrease in insulin-stimulated glucose clearance into white adipose tissue and large intestine and specific changes in the recipient's microbiota composition observed. FMT can transmit HFHS-induced disrupted glucose metabolism to recipient mice independently of any change in adiposity. However, the protective metabolic effect of ET on glucose metabolism is not mediated through fecal factors.


Assuntos
Dieta Hiperlipídica , Sacarose Alimentar , Transplante de Microbiota Fecal , Intolerância à Glucose/microbiologia , Obesidade/microbiologia , Condicionamento Físico Animal , Comportamento Sedentário , Adiposidade , Animais , Microbioma Gastrointestinal , Glucose/metabolismo , Intolerância à Glucose/metabolismo , Masculino , Camundongos , Obesidade/metabolismo , Distribuição Aleatória
3.
Eur Heart J ; 39(23): 2158-2167, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29905812

RESUMO

Aim: Rheumatoid arthritis (RA) is associated with an approximately two-fold elevated risk of cardiovascular (CV)-related mortality. Patients with RA present with systemic inflammation including raised circulating myeloid cells, but fail to display traditional CV risk-factors, particularly dyslipidaemia. We aimed to explore if increased circulating myeloid cells is associated with impaired atherosclerotic lesion regression or altered progression in RA. Methods and results: Using flow cytometry, we noted prominent monocytosis, neutrophilia, and thrombocytosis in two mouse models of RA. This was due to enhanced proliferation of the haematopoietic stem and progenitor cells (HSPCs) in the bone marrow and the spleen. HSPCs expansion was associated with an increase in the cholesterol content, due to a down-regulation of cholesterol efflux genes, Apoe, Abca1, and Abcg1. The HSPCs also had enhanced expression of key myeloid promoting growth factor receptors. Systemic inflammation was found to cause defective cellular cholesterol metabolism. Increased myeloid cells in mice with RA were associated with a significant impairment in lesion regression, even though cholesterol levels were equivalent to non-arthritic mice. Lesions from arthritic mice exhibited a less stable phenotype as demonstrated by increased immune cell infiltration, lipid accumulation, and decreased collagen formation. In a progression model, we noted monocytosis, enhanced monocytes recruitment to lesions, and increased plaque macrophages. This was reversed with administration of reconstituted high-density lipoprotein (rHDL). Furthermore, RA patients have expanded CD16+ monocyte subsets and a down-regulation of ABCA1 and ABCG1. Conclusion: Rheumatoid arthritis impairs atherosclerotic regression and alters progression, which is associated with an expansion of myeloid cells and disturbed cellular cholesterol handling, independent of plasma cholesterol levels. Infusion of rHDL prevented enhanced myelopoiesis and monocyte entry into lesions. Targeting cellular cholesterol defects in people with RA, even if plasma cholesterol is within the normal range, may limit vascular disease.


Assuntos
Artrite Reumatoide/metabolismo , Aterosclerose/metabolismo , Colesterol/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Monócitos/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Artrite Reumatoide/imunologia , Aterosclerose/genética , Aterosclerose/imunologia , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Hematopoese Extramedular/imunologia , Humanos , Leucocitose , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Monócitos/imunologia , Mielopoese/imunologia , Neutrófilos , RNA Mensageiro/metabolismo , Trombocitose
4.
Diabetes Obes Metab ; 20(8): 1928-1936, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29652108

RESUMO

AIMS: The induction of heat shock protein 72 (Hsp72) via heating, genetic manipulation or pharmacological activation is metabolically protective in the setting of obesity-induced insulin resistance across mammalian species. In this study, we set out to determine whether the overexpression of Hsp72, specifically in skeletal muscle, can protect against high-fat diet (HFD)-induced obesity and insulin resistance. MATERIALS AND METHODS: An Adeno-Associated Viral vector (AAV), designed to overexpress Hsp72 in skeletal muscle only, was used to study the effects of increasing Hsp72 levels on various metabolic parameters. Two studies were conducted, the first with direct intramuscular (IM) injection of the AAV:Hsp72 into the tibialis anterior hind-limb muscle and the second with a systemic injection to enable body-wide skeletal muscle transduction. RESULTS: IM injection of the AAV:Hsp72 significantly improved skeletal muscle insulin-stimulated glucose clearance in treated hind-limb muscles, as compared with untreated muscles of the contralateral leg when mice were fed an HFD. Despite this finding, systemic administration of AAV:Hsp72 did not improve body composition parameters such as body weight, fat mass or percentage body fat, nor did it lead to an improvement in fasting glucose levels or glucose tolerance. Furthermore, no differences were observed for other metabolic parameters such as whole-body oxygen consumption, energy expenditure or physical activity levels. CONCLUSIONS: At the levels of Hsp72 over-expression reported herein, skeletal muscle-specific Hsp72 overexpression via IM injection has the capacity to increase insulin-stimulated glucose clearance in this muscle. However, upon systemic injection, which results in lower muscle Hsp72 overexpression, no beneficial effects on whole-body metabolism are observed.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Intolerância à Glucose/prevenção & controle , Proteínas de Choque Térmico HSP72/metabolismo , Hipoglicemiantes/uso terapêutico , Resistência à Insulina , Insulina/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Absorção Fisiológica/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Técnicas de Transferência de Genes , Glucose/metabolismo , Intolerância à Glucose/sangue , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Proteínas de Choque Térmico HSP72/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Especificidade de Órgãos , Projetos Piloto , Ratos
5.
Cell Metab ; 27(5): 1096-1110.e5, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29681442

RESUMO

Chronic inflammation is a hallmark of obesity and is linked to the development of numerous diseases. The activation of toll-like receptor 4 (TLR4) by long-chain saturated fatty acids (lcSFAs) is an important process in understanding how obesity initiates inflammation. While experimental evidence supports an important role for TLR4 in obesity-induced inflammation in vivo, via a mechanism thought to involve direct binding to and activation of TLR4 by lcSFAs, several lines of evidence argue against lcSFAs being direct TLR4 agonists. Using multiple orthogonal approaches, we herein provide evidence that while loss-of-function models confirm that TLR4 does, indeed, regulate lcSFA-induced inflammation, TLR4 is not a receptor for lcSFAs. Rather, we show that TLR4-dependent priming alters cellular metabolism, gene expression, lipid metabolic pathways, and membrane lipid composition, changes that are necessary for lcSFA-induced inflammation. These results reconcile previous discordant observations and challenge the prevailing view of TLR4's role in initiating obesity-induced inflammation.


Assuntos
Inflamação/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Palmitatos/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Humanos , Inflamação/etiologia , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Obesidade/complicações , Transdução de Sinais
6.
Haematologica ; 103(4): 597-606, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29371326

RESUMO

Obesity enhances the risk of developing myelodysplastic syndromes. However, the effect of obesity on survival is unclear. Obese people present with monocytosis due to inflammatory signals emanating from obese adipose tissue. We hypothesized that obesity-induced myelopoiesis would promote the transition of myelodysplastic syndrome to acute myeloid leukemia and accelerate mortality in obesity. Obese Ob/Ob mice or their lean littermate controls received a bone marrow transplant from NUP98-HOXD13 transgenic mice, a model of myelodysplastic syndrome. The metabolic parameters of the mice were examined throughout the course of the study, as were blood leukocytes. Myeloid cells were analyzed in the bone, spleen, liver and adipose tissue by flow cytometry halfway through the disease progression and at the endpoint. Survival curves were also calculated. Contrary to our hypothesis, transplantation of NUP98-HOXD13 bone marrow into obese recipient mice significantly increased survival time compared with lean recipient controls. While monocyte skewing was exacerbated in obese mice receiving NUP98-HOXD13 bone marrow, transformation to acute myeloid leukemia was not enhanced. Increased survival of obese mice was associated with a preservation of fat mass as well as increased myeloid cell deposition within the adipose tissue, and a concomitant reduction in detrimental myeloid cell accumulation within other organs. The study herein revealed that obesity increases survival in animals with myelodysplastic syndrome. This may be due to the greater fat mass of Ob/Ob mice, which acts as a sink for myeloid cells, preventing their accumulation in other key organs, such as the liver.


Assuntos
Síndromes Mielodisplásicas/mortalidade , Obesidade , Animais , Medula Óssea/química , Transplante de Medula Óssea , Modelos Animais de Doenças , Proteínas de Homeodomínio , Leptina/deficiência , Leucemia Mieloide Aguda/etiologia , Camundongos , Camundongos Transgênicos , Síndromes Mielodisplásicas/patologia , Células Mieloides , Complexo de Proteínas Formadoras de Poros Nucleares , Taxa de Sobrevida , Fatores de Transcrição
7.
PLoS One ; 12(6): e0179099, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28632778

RESUMO

Non-alcoholic steatohepatitis (NASH) is a liver disease with the potential to lead to cirrhosis and hepatocellular carcinoma. Interleukin-6 (IL-6) has been implicated in the pathogenesis of NASH, with the so-called IL-6 'trans-signaling' cascade being responsible for the pro-inflammatory actions of this cytokine. We aimed to block IL-6 'trans-signaling', using a transgenic mouse that overexpresses human soluble glycoprotein130 (sgp130Fc Tg mice) fed a commonly used dietary model of inducing NASH (methionine and choline deficient-diet; MCD diet) and hypothesized that markers of NASH would be ameliorated in such mice. Sgp130Fc Tg and littermate control mice were fed a MCD or control diet for 4 weeks. The MCD diet induced many hallmarks of NASH including hepatomegaly, steatosis, and liver inflammation. However, in contrast with other mouse models and, indeed, human NASH, the MCD diet model did not increase the mRNA or protein expression of IL-6. Not surprisingly, therefore, markers of MCD diet-induced NASH were unaffected by sgp130Fc transgenic expression. While the MCD diet model induces many pathophysiological markers of NASH, it does not induce increased IL-6 expression in the liver, a key hallmark of human NASH. We, therefore, caution the use of the MCD diet as a viable mouse model of NASH.


Assuntos
Deficiência de Colina , Receptor gp130 de Citocina/administração & dosagem , Modelos Animais de Doenças , Inflamação/patologia , Interleucina-6/metabolismo , Metionina/deficiência , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Biomarcadores/metabolismo , Suplementos Nutricionais , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo
8.
J Clin Invest ; 127(6): 2133-2147, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28504650

RESUMO

Platelets play a critical role in atherogenesis and thrombosis-mediated myocardial ischemia, processes that are accelerated in diabetes. Whether hyperglycemia promotes platelet production and whether enhanced platelet production contributes to enhanced atherothrombosis remains unknown. Here we found that in response to hyperglycemia, neutrophil-derived S100 calcium-binding proteins A8/A9 (S100A8/A9) interact with the receptor for advanced glycation end products (RAGE) on hepatic Kupffer cells, resulting in increased production of IL-6, a pleiotropic cytokine that is implicated in inflammatory thrombocytosis. IL-6 acts on hepatocytes to enhance the production of thrombopoietin, which in turn interacts with its cognate receptor c-MPL on megakaryocytes and bone marrow progenitor cells to promote their expansion and proliferation, resulting in reticulated thrombocytosis. Lowering blood glucose using a sodium-glucose cotransporter 2 inhibitor (dapagliflozin), depleting neutrophils or Kupffer cells, or inhibiting S100A8/A9 binding to RAGE (using paquinimod), all reduced diabetes-induced thrombocytosis. Inhibiting S100A8/A9 also decreased atherogenesis in diabetic mice. Finally, we found that patients with type 2 diabetes have reticulated thrombocytosis that correlates with glycated hemoglobin as well as increased plasma S100A8/A9 levels. These studies provide insights into the mechanisms that regulate platelet production and may aid in the development of strategies to improve on current antiplatelet therapies and to reduce cardiovascular disease risk in diabetes.


Assuntos
Aterosclerose/imunologia , Calgranulina A/fisiologia , Calgranulina B/fisiologia , Diabetes Mellitus Experimental/imunologia , Neutrófilos/metabolismo , Trombocitose/imunologia , Animais , Aterosclerose/metabolismo , Plaquetas/fisiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Trombocitose/metabolismo
9.
Cell Metab ; 23(1): 155-64, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26603191

RESUMO

Interleukin-18 (IL-18) is activated by Caspase-1 in inflammasome complexes and has anti-obesity effects; however, it is not known which inflammasome regulates this process. We found that mice lacking the NLRP1 inflammasome phenocopy mice lacking IL-18, with spontaneous obesity due to intrinsic lipid accumulation. This is exacerbated when the mice are fed a high-fat diet (HFD) or a high-protein diet, but not when mice are fed a HFD with low energy density (high fiber). Furthermore, mice with an activating mutation in NLRP1, and hence increased IL-18, have decreased adiposity and are resistant to diet-induced metabolic dysfunction. Feeding these mice a HFD further increased plasma IL-18 concentrations and strikingly resulted in loss of adipose tissue mass and fatal cachexia, which could be prevented by genetic deletion of IL-18. Thus, NLRP1 is an innate immune sensor that functions in the context of metabolic stress to produce IL-18, preventing obesity and metabolic syndrome.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Inflamassomos/metabolismo , Interleucina-18/biossíntese , Síndrome Metabólica/metabolismo , Obesidade/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Interleucina-18/genética , Fígado/metabolismo , Fígado/patologia , Masculino , Síndrome Metabólica/prevenção & controle , Camundongos Knockout , Obesidade/etiologia , Obesidade/prevenção & controle
10.
Cell Metab ; 21(3): 403-16, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25738456

RESUMO

Interleukin-6 (IL-6) plays a paradoxical role in inflammation and metabolism. The pro-inflammatory effects of IL-6 are mediated via IL-6 "trans-signaling," a process where the soluble form of the IL-6 receptor (sIL-6R) binds IL-6 and activates signaling in inflammatory cells that express the gp130 but not the IL-6 receptor. Here we show that trans-signaling recruits macrophages into adipose tissue (ATM). Moreover, blocking trans-signaling with soluble gp130Fc protein prevents high-fat diet (HFD)-induced ATM accumulation, but does not improve insulin action. Importantly, however, blockade of IL-6 trans-signaling, unlike complete ablation of IL-6 signaling, does not exacerbate obesity-induced weight gain, liver steatosis, or insulin resistance. Our data identify the sIL-6R as a critical chemotactic signal for ATM recruitment and suggest that selectively blocking IL-6 trans-signaling may be a more favorable treatment option for inflammatory diseases, compared with current treatments that completely block the action of IL-6 and negatively impact upon metabolic homeostasis.


Assuntos
Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina/fisiologia , Interleucina-6/metabolismo , Macrófagos/metabolismo , Macrófagos/fisiologia , Transdução de Sinais/fisiologia , Tecido Adiposo/fisiologia , Animais , Receptor gp130 de Citocina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Interleucina-6/metabolismo
11.
Nat Commun ; 5: 5190, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25307742

RESUMO

Insulin integrates hepatic glucose and lipid metabolism, directing nutrients to storage as glycogen and triglyceride. In type 2 diabetes, levels of the former are low and the latter are exaggerated, posing a pathophysiologic and therapeutic conundrum. A branching model of insulin signalling, with FoxO1 presiding over glucose production and Srebp-1c regulating lipogenesis, provides a potential explanation. Here we illustrate an alternative mechanism that integrates glucose production and lipogenesis under the unifying control of FoxO. Liver-specific ablation of three FoxOs (L-FoxO1,3,4) prevents the induction of glucose-6-phosphatase and the repression of glucokinase during fasting, thus increasing lipogenesis at the expense of glucose production. We document a similar pattern in the early phases of diet-induced insulin resistance, and propose that FoxOs are required to enable the liver to direct nutritionally derived carbons to glucose versus lipid metabolism. Our data underscore the heterogeneity of hepatic insulin resistance during progression from the metabolic syndrome to overt diabetes, and the conceptual challenge of designing therapies that curtail glucose production without promoting hepatic lipid accumulation.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Glucose/metabolismo , Lipogênese , Fígado/metabolismo , Animais , Proteínas de Ciclo Celular , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/genética , Jejum/metabolismo , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Glucoquinase/genética , Glucoquinase/metabolismo , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
J Biol Chem ; 284(48): 33466-74, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19808675

RESUMO

Chronic hepatitis C virus (HCV) infection is associated with altered lipid metabolism and hepatocellular steatosis. Virus-induced steatosis is a cytopathic effect of HCV replication. The goal of this study was to examine the mechanisms underlying HCV-induced lipid metabolic defects in a transgenic mouse model expressing the full HCV protein repertoire at levels corresponding to natural human infection. In this model, expression of the HCV full-length open reading frame was associated with hepatocellular steatosis and reduced plasma triglyceride levels. Triglyceride secretion was impaired, whereas lipogenesis was activated. Increased lipogenic enzyme transcription was observed, resulting from maturational activation and nuclear translocation of sterol regulatory element-binding protein 1c (SREBP1c). However, endoplasmic reticulum (ER) stress markers were expressed at similar levels in both HCV transgenic mice and their wild type counterparts, suggesting that SREBP1c proteolytic cleavage in the presence of HCV proteins was independent of ER stress. In conclusion, transgenic mice expressing the HCV full-length polyprotein at low levels have decreased plasma triglyceride levels and develop hepatocellular steatosis in the same way as HCV-infected patients. In these mice, SREBP1c activation by one or several HCV proteins induces de novo triglyceride synthesis via the lipogenic pathway, in a manner independent of ER stress, whereas triglyceride secretion is simultaneously reduced.


Assuntos
Hepacivirus/metabolismo , Lipogênese/fisiologia , Triglicerídeos/metabolismo , Proteínas Virais/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Fígado Gorduroso/sangue , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Hepacivirus/genética , Hepatite C/sangue , Hepatite C/complicações , Hepatite C/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/sangue , Proteínas Virais/genética
13.
J Clin Invest ; 119(5): 1201-15, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19363290

RESUMO

Hepatic steatosis is present in insulin-resistant obese rodents and is concomitant with active lipogenesis. Hepatic lipogenesis depends on the insulin-induced activation of the transcription factor SREBP-1c. Despite prevailing insulin resistance, SREBP-1c is activated in the livers of genetically and diet-induced obese rodents. Recent studies have reported the presence of an ER stress response in the livers of obese ob/ob mice. To assess whether ER stress promotes SREBP-1c activation and thus contributes to lipogenesis, we overexpressed the chaperone glucose-regulated protein 78 (GRP78) in the livers of ob/ob mice using an adenoviral vector. GRP78 overexpression reduced ER stress markers and inhibited SREBP-1c cleavage and the expression of SREBP-1c and SREBP-2 target genes. Furthermore, hepatic triglyceride and cholesterol contents were reduced, and insulin sensitivity improved, in GRP78-injected mice. These metabolic improvements were likely mediated by restoration of IRS-2 expression and tyrosine phosphorylation. Interestingly, GRP78 overexpression also inhibited insulin-induced SREBP-1c cleavage in cultured primary hepatocytes. These findings demonstrate that GRP78 inhibits both insulin-dependent and ER stress-dependent SREBP-1c proteolytic cleavage and explain the role of ER stress in hepatic steatosis in obese rodents.


Assuntos
Retículo Endoplasmático/metabolismo , Fígado Gorduroso/terapia , Proteínas de Choque Térmico/genética , Insulina/farmacologia , Chaperonas Moleculares/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Retículo Endoplasmático/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Glucose/metabolismo , Proteínas de Choque Térmico/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Obesos , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Obesidade/metabolismo , Ratos , Ratos Wistar , Ratos Zucker , Transdução de Sinais/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Tapsigargina/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA