Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 123(11): 1817-1826, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35959632

RESUMO

Understanding the mechanisms responsible for the kidney's defense against ascending uropathogen is critical to devise novel treatment strategies against increasingly antibiotic resistant uropathogen. Growing body of evidence indicate Intercalated cells of the kidney as the key innate immune epithelial cells against uropathogen. The aim of this study was to find orthologous and differentially expressed bacterial defense genes in human versus murine intercalated cells. We simultaneously analyzed 84 antibacterial genes in intercalated cells enriched from mouse and human kidney samples. Intercalated cell "reporter mice" were exposed to saline versus uropathogenic Escherichia coli (UPEC) transurethrally for 1 h in vivo, and intercalated cells were flow sorted. Human kidney intercalated cells were enriched from kidney biopsy using magnetic-activated cell sorting and exposed to UPEC in vitro for 1 h. RT2 antibacterial PCR array was performed. Mitogen-activated protein kinase kinase kinase 7 (MAP3K7) messenger RNA (mRNA) expression increased in intercalated cells of both humans and mice following UPEC exposure. Intercalated cell MAP3K7 protein expression was defined by immunofluorescence and confocal imaging analysis, was consistent with the increased MAP3K7 mRNA expression profiles defined by PCR. The presence of the orthologous innate immune gene MAP3K7/TAK1 suggests that it may be a key regulator of the intercalated cell antibacterial response and demands further investigation of its role in urinary tract infection pathogenesis.


Assuntos
Infecções por Escherichia coli , Escherichia coli Uropatogênica , Humanos , Camundongos , Animais , Escherichia coli Uropatogênica/genética , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Rim , Células Epiteliais/microbiologia , Genes Reguladores , Imunidade Inata/genética , Antibacterianos , RNA Mensageiro
2.
Am J Physiol Renal Physiol ; 321(6): F675-F688, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34658261

RESUMO

Expansion of renal lymphatic networks, or lymphangiogenesis (LA), is well recognized during development and is now being implicated in kidney diseases. Although LA is associated with multiple pathological conditions, very little is known about its role in acute kidney injury. The purpose of this study was to evaluate the role of LA in a model of cisplatin-induced nephrotoxicity. LA is predominately regulated by vascular endothelial growth factor (VEGF)-C and VEGF-D, ligands that exert their function through their cognate receptor VEGF receptor 3 (VEGFR3). We demonstrated that use of MAZ51, a selective VEGFR3 inhibitor, caused significantly worse structural and functional kidney damage in cisplatin nephrotoxicity. Apoptotic cell death and inflammation were also increased in MAZ51-treated animals compared with vehicle-treated animals following cisplatin administration. Notably, MAZ51 caused significant upregulation of intrarenal phospho-NF-κB, phospho-JNK, and IL-6. Cisplatin nephrotoxicity is associated with vascular congestion due to endothelial dysfunction. Using three-dimensional tissue cytometry, a novel approach to explore lymphatics in the kidney, we detected significant vascular autofluorescence attributed to erythrocytes in cisplatin alone-treated animals. Interestingly, no such congestion was detected in MAZ51-treated animals. We found increased renal vascular damage in MAZ51-treated animals, whereby MAZ51 caused a modest decrease in the endothelial markers endomucin and von Willebrand factor, with a modest increase in VEGFR2. Our findings identify a protective role for de novo LA in cisplatin nephrotoxicity and provide a rationale for the development of therapeutic approaches targeting LA. Our study also suggests off-target effects of MAZ51 on the vasculature in the setting of cisplatin nephrotoxicity.NEW & NOTEWORTHY Little is known about injury-associated LA in the kidney and its role in the pathophysiology of acute kidney injury (AKI). Observed exacerbation of cisplatin-induced AKI after LA inhibition was accompanied by increased medullary damage and cell death in the kidney. LA inhibition also upregulated compensatory expression of LA regulatory proteins, including JNK and NF-κB. These data support the premise that LA is induced during AKI and lymphatic expansion is a protective mechanism in cisplatin nephrotoxicity.


Assuntos
Indóis/toxicidade , Nefropatias/induzido quimicamente , Rim/efeitos dos fármacos , Linfangiogênese/efeitos dos fármacos , Vasos Linfáticos/efeitos dos fármacos , Naftalenos/toxicidade , Inibidores de Proteínas Quinases/toxicidade , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Cisplatino , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Rim/enzimologia , Rim/patologia , Rim/fisiopatologia , Nefropatias/enzimologia , Nefropatias/patologia , Nefropatias/fisiopatologia , Vasos Linfáticos/enzimologia , Vasos Linfáticos/patologia , Vasos Linfáticos/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosforilação , Transdução de Sinais , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
Lab Invest ; 101(9): 1186-1196, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34017058

RESUMO

The lymphatic system plays an integral role in physiology and has recently been identified as a key player in disease progression. Tissue injury stimulates lymphatic expansion, or lymphangiogenesis (LA), though its precise role in disease processes remains unclear. LA is associated with inflammation, which is a key component of acute kidney injury (AKI), for which there are no approved therapies. While LA research has gained traction in the last decade, there exists a significant lack of understanding of this process in the kidney. Though innovative studies have elucidated markers and models with which to study LA, the field is still evolving with ways to visualize lymphatics in vivo. Prospero-related homeobox-1 (Prox-1) is the master regulator of LA and determines lymphatic cell fate through its action on vascular endothelial growth factor receptor expression. Here, we investigate the consequences of AKI on the abundance and distribution of lymphatic endothelial cells using Prox1-tdTomato reporter mice (ProxTom) coupled with large-scale three-dimensional quantitative imaging and tissue cytometry (3DTC). Using these technologies, we describe the spatial dynamics of lymphatic vasculature in quiescence and post-AKI. We also describe the use of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) as a marker of lymphatic vessels using 3DTC in the absence of the ProxTom reporter mice as an alternative approach. The use of 3DTC for lymphatic research presents a new avenue with which to study the origin and distribution of renal lymphatic vessels. These findings will enhance our understanding of renal lymphatic function during injury and could inform the development of novel therapeutics for intervention in AKI.


Assuntos
Injúria Renal Aguda , Citometria por Imagem , Imageamento Tridimensional , Vasos Linfáticos , Injúria Renal Aguda/diagnóstico por imagem , Injúria Renal Aguda/metabolismo , Animais , Proteínas de Homeodomínio/metabolismo , Linfangiogênese , Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/metabolismo , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Supressoras de Tumor/metabolismo
4.
Nat Commun ; 12(1): 2405, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893305

RESUMO

Kidney intercalated cells are involved in acid-base homeostasis via vacuolar ATPase expression. Here we report six human intercalated cell subtypes, including hybrid principal-intercalated cells identified from single cell transcriptomics. Phagosome maturation is a biological process that increases in biological pathway analysis rank following exposure to uropathogenic Escherichia coli in two of the intercalated cell subtypes. Real time confocal microscopy visualization of murine renal tubules perfused with green fluorescent protein expressing Escherichia coli or pHrodo Green E. coli BioParticles demonstrates that intercalated cells actively phagocytose bacteria then acidify phagolysosomes. Additionally, intercalated cells have increased vacuolar ATPase expression following in vivo experimental UTI. Taken together, intercalated cells exhibit a transcriptional response conducive to the kidney's defense, engulf bacteria and acidify the internalized bacteria. Intercalated cells represent an epithelial cell with characteristics of professional phagocytes like macrophages.


Assuntos
Células Epiteliais/imunologia , Rim/imunologia , Fagócitos/imunologia , Escherichia coli Uropatogênica/imunologia , Ácidos/química , Animais , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Rim/citologia , Rim/metabolismo , Túbulos Renais Coletores/citologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Fagócitos/citologia , Análise de Célula Única/métodos , ATPases Vacuolares Próton-Translocadoras/metabolismo
5.
JCI Insight ; 5(9)2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32376804

RESUMO

Immune checkpoint blockade immunotherapy delivers promising clinical results in colorectal cancer (CRC). However, only a fraction of cancer patients develop durable responses. The tumor microenvironment (TME) negatively impacts tumor immunity and subsequently clinical outcomes. Therefore, there is a need to identify other checkpoint targets associated with the TME. Early-onset factors secreted by stromal cells as well as tumor cells often help recruit immune cells to the TME, among which are alarmins such as IL-33. The only known receptor for IL-33 is stimulation 2 (ST2). Here we demonstrated that high ST2 expression is associated with poor survival and is correlated with low CD8+ T cell cytotoxicity in CRC patients. ST2 is particularly expressed in tumor-associated macrophages (TAMs). In preclinical models of CRC, we demonstrated that ST2-expressing TAMs (ST2+ TAMs) were recruited into the tumor via CXCR3 expression and exacerbated the immunosuppressive TME; and that combination of ST2 depletion using ST2-KO mice with anti-programmed death 1 treatment resulted in profound growth inhibition of CRC. Finally, using the IL-33trap fusion protein, we suppressed CRC tumor growth and decreased tumor-infiltrating ST2+ TAMs. Together, our findings suggest that ST2 could serve as a potential checkpoint target for CRC immunotherapy.


Assuntos
Neoplasias Colorretais/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Interleucina-33/imunologia , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Linhagem Celular Tumoral , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Macrófagos Associados a Tumor/citologia
6.
Sci Rep ; 8(1): 13759, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30214007

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has reactive stroma that promotes tumor signaling, fibrosis, inflammation, and hypoxia, which activates HIF-1α to increase tumor cell metastasis and therapeutic resistance. Carbonic anhydrase IX (CA9) stabilizes intracellular pH following induction by HIF-1α. Redox effector factor-1 (APE1/Ref-1) is a multifunctional protein with redox signaling activity that converts certain oxidized transcription factors to a reduced state, enabling them to upregulate tumor-promoting genes. Our studies evaluate PDAC hypoxia responses and APE1/Ref-1 redox signaling contributions to HIF-1α-mediated CA9 transcription. Our previous studies implicated this pathway in PDAC cell survival under hypoxia. We expand those studies, comparing drug responses using patient-derived PDAC cells displaying differential hypoxic responses in 3D spheroid tumor-stroma models to characterize second generation APE1/Ref-1 redox signaling and CA9 inhibitors. Our data demonstrates that HIF-1α-mediated CA9 induction differs between patient-derived PDAC cells and that APE1/Ref-1 redox inhibition attenuates this induction by decreasing hypoxia-induced HIF-1 DNA binding. Dual-targeting of APE1/Ref-1 and CA9 in 3D spheroids demonstrated that this combination effectively kills PDAC tumor cells displaying drastically different levels of CA9. New APE1/Ref-1 and CA9 inhibitors were significantly more potent alone and in combination, highlighting the potential of combination therapy targeting the APE1-Ref-1 signaling axis with significant clinical potential.


Assuntos
Antígenos de Neoplasias/genética , Anidrase Carbônica IX/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Pancreáticas/tratamento farmacológico , Anidrase Carbônica IX/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pancreáticas/genética , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Transcrição Gênica/efeitos dos fármacos
7.
J Clin Invest ; 127(12): 4527-4540, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29130940

RESUMO

Endothelial cells (ECs) are components of the hematopoietic microenvironment and regulate hematopoietic stem and progenitor cell (HSPC) homeostasis. Cytokine treatments that cause HSPC trafficking to peripheral blood are associated with an increase in dipeptidylpeptidase 4/CD26 (DPP4/CD26), an enzyme that truncates the neurotransmitter neuropeptide Y (NPY). Here, we show that enzymatically altered NPY signaling in ECs caused reduced VE-cadherin and CD31 expression along EC junctions, resulting in increased vascular permeability and HSPC egress. Moreover, selective NPY2 and NPY5 receptor antagonists restored vascular integrity and limited HSPC mobilization, demonstrating that the enzymatically controlled vascular gateway specifically opens by cleavage of NPY by CD26 signaling via NPY2 and NPY5 receptors. Mice lacking CD26 or NPY exhibited impaired HSPC trafficking that was restored by treatment with truncated NPY. Thus, our results point to ECs as gatekeepers of HSPC trafficking and identify a CD26-mediated NPY axis that has potential as a pharmacologic target to regulate hematopoietic trafficking in homeostatic and stress conditions.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Células Endoteliais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Neuropeptídeo Y/metabolismo , Transdução de Sinais/fisiologia , Animais , Dipeptidil Peptidase 4/genética , Células Endoteliais/citologia , Células-Tronco Hematopoéticas/citologia , Humanos , Camundongos , Camundongos Knockout , Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/agonistas , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo
8.
J Vis Exp ; (121)2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28362378

RESUMO

Increasing evidence indicates that normal hematopoiesis is regulated by distinct microenvironmental cues in the BM, which include specialized cellular niches modulating critical hematopoietic stem cell (HSC) functions1,2. Indeed, a more detailed picture of the hematopoietic microenvironment is now emerging, in which the endosteal and the endothelial niches form functional units for the regulation of normal HSC and their progeny3,4,5. New studies have revealed the importance of perivascular cells, adipocytes and neuronal cells in maintaining and regulating HSC function6,7,8. Furthermore, there is evidence that cells from different lineages, i.e. myeloid and lymphoid cells, home and reside in specific niches within the BM microenvironment. However, a complete mapping of the BM microenvironment and its occupants is still in progress. Transgenic mouse strains expressing lineage specific fluorescent markers or mice genetically engineered to lack selected molecules in specific cells of the BM niche are now available. Knock-out and lineage tracking models, in combination with transplantation approaches, provide the opportunity to refine the knowledge on the role of specific "niche" cells for defined hematopoietic populations, such as HSC, B-cells, T-cells, myeloid cells and erythroid cells. This strategy can be further potentiated by merging the use of two-photon microscopy of the calvarium. By providing in vivo high resolution imaging and 3-D rendering of the BM calvarium, we can now determine precisely the location where specific hematopoietic subsets home in the BM and evaluate the kinetics of their expansion over time. Here, Lys-GFP transgenic mice (marking myeloid cells)9 and RBPJ knock-out mice (lacking canonical Notch signaling)10 are used in combination with IVFM to determine the engraftment of myeloid cells to a Notch defective BM microenvironment.


Assuntos
Células da Medula Óssea/citologia , Células-Tronco Hematopoéticas/citologia , Microscopia Intravital/métodos , Microscopia de Fluorescência/métodos , Modelos Genéticos , Nicho de Células-Tronco , Animais , Células da Medula Óssea/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
9.
J Neurosurg ; 127(6): 1219-1230, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28059653

RESUMO

OBJECTIVE Defects in the apoptotic machinery and augmented survival signals contribute to drug resistance in glioblastoma (GBM). Moreover, another complexity related to GBM treatment is the concept that GBM development and recurrence may arise from the expression of GBM stem cells (GSCs). Therefore, the use of a multifaceted approach or multitargeted agents that affect specific tumor cell characteristics will likely be necessary to successfully eradicate GBM. The objective of this study was to investigate the usefulness of sulforaphane (SFN)-a constituent of cruciferous vegetables with a multitargeted effect-as a therapeutic agent for GBM. METHODS The inhibitory effects of SFN on established cell lines, early primary cultures, CD133-positive GSCs, GSC-derived spheroids, and GBM xenografts were evaluated using various methods, including GSC isolation and the sphere-forming assay, analysis of reactive oxygen species (ROS) and apoptosis, cell growth inhibition assay, comet assays for assessing SFN-triggered DNA damage, confocal microscopy, Western blot analysis, and the determination of in vivo efficacy as assessed in human GBM xenograft models. RESULTS SFN triggered the significant inhibition of cell survival and induced apoptotic cell death, which was associated with caspase 3 and caspase 7 activation. Moreover, SFN triggered the formation of mitochondrial ROS, and SFN-triggered cell death was ROS dependent. Comet assays revealed that SFN increased single- and double-strand DNA breaks in GBM. Compared with the vehicle control cells, a significantly higher amount of γ-H2AX foci correlated with an increase in DNA double-strand breaks in the SFN-treated samples. Furthermore, SFN robustly inhibited the growth of GBM cell-induced cell death in established cell cultures and early-passage primary cultures and, most importantly, was effective in eliminating GSCs, which play a major role in drug resistance and disease recurrence. In vivo studies revealed that SFN administration at 100 mg/kg for 5-day cycles repeated for 3 weeks significantly decreased the growth of ectopic xenografts that were established from the early passage of primary cultures of GBM10. CONCLUSIONS These results suggest that SFN is a potent anti-GBM agent that targets several apoptosis and cell survival pathways and further preclinical and clinical studies may prove that SFN alone or in combination with other therapies may be potentially useful for GBM therapy.


Assuntos
Anticarcinógenos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/metabolismo , Isotiocianatos/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Glioblastoma/patologia , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sulfóxidos
10.
Mol Cancer Ther ; 15(5): 794-805, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26873728

RESUMO

Constitutively activated STAT3 protein has been found to be a key regulator of pancreatic cancer and a target for molecular therapeutic intervention. In this study, PG-S3-001, a small molecule derived from the SH-4-54 class of STAT3 inhibitors, was found to inhibit patient-derived pancreatic cancer cell proliferation in vitro and in vivo in the low micromolar range. PG-S3-001 binds the STAT3 protein potently, Kd = 324 nmol/L by surface plasmon resonance, and showed no effect in a kinome screen (>100 cancer-relevant kinases). In vitro studies demonstrated potent cell killing as well as inhibition of STAT3 activation in pancreatic cancer cells. To better model the tumor and its microenvironment, we utilized three-dimensional (3D) cultures of patient-derived pancreatic cancer cells in the absence and presence of cancer-associated fibroblasts (CAF). In this coculture model, inhibition of tumor growth is maintained following STAT3 inhibition in the presence of CAFs. Confocal microscopy was used to verify tumor cell death following treatment of 3D cocultures with PG-S3-001. The 3D model was predictive of in vivo efficacy as significant tumor growth inhibition was observed upon administration of PG-S3-001. These studies showed that the inhibition of STAT3 was able to impact the survival of tumor cells in a relevant 3D model, as well as in a xenograft model using patient-derived cells. Mol Cancer Ther; 15(5); 794-805. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Ligantes , Masculino , Modelos Moleculares , Conformação Molecular , Neoplasias Pancreáticas/tratamento farmacológico , Fosforilação , Ligação Proteica , Fator de Transcrição STAT3/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto , Domínios de Homologia de src
11.
PLoS One ; 10(7): e0131677, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26136112

RESUMO

Autosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model. Donor cell engraftment and both mutant and wild type Pkhd1 were found in treated but not control PCK kidneys 15 weeks after the final cell infusion. To examine the mechanisms of global protection with a small number of transplanted cells, we tested the hypothesis that exosomes derived from normal Sprague Dawley cells can limit the cystic phenotype of PCK recipient cells. We found that renal exosomes originating from normal Sprague Dawley cells carried and transferred wild type Pkhd1 mRNA to PCK cells in vivo and in vitro and restricted cyst formation by cultured PCK cells. The results indicate that transplantation with renal cells containing wild type Pkhd1 improves renal structure and function in autosomal recessive polycystic kidney disease and may provide an intra-renal supply of normal Pkhd1 mRNA.


Assuntos
Túbulos Renais/patologia , Rim Policístico Autossômico Recessivo/metabolismo , Rim Policístico Autossômico Recessivo/terapia , Animais , Proliferação de Células/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Cistos/metabolismo , Modelos Animais de Doenças , Exossomos , Feminino , Genótipo , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Fígado/metabolismo , Masculino , Fenótipo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteína Amiloide A Sérica/metabolismo
12.
Am J Physiol Lung Cell Mol Physiol ; 309(4): L425-34, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26092999

RESUMO

In addition to exerting a potent anti-elastase function, α-1 antitrypsin (A1AT) maintains the structural integrity of the lung by inhibiting endothelial inflammation and apoptosis. A main serpin secreted in circulation by hepatocytes, A1AT requires uptake by the endothelium to achieve vasculoprotective effects. This active uptake mechanism, which is inhibited by cigarette smoking (CS), involves primarily clathrin- but also caveola-mediated endocytosis and may require active binding to a receptor. Because circulating A1AT binds to high-density lipoprotein (HDL), we hypothesized that scavenging receptors are candidates for endothelial uptake of the serpin. Although the low-density lipoprotein (LDL) receptor-related protein 1 (LRP1) internalizes only elastase-bound A1AT, the scavenger receptor B type I (SR-BI), which binds and internalizes HDL and is modulated by CS, may be involved in A1AT uptake. Transmission electron microscopy imaging of colloidal gold-labeled A1AT confirmed A1AT endocytosis in both clathrin-coated vesicles and caveolae in endothelial cells. SR-BI immunoprecipitation identified binding to A1AT at the plasma membrane. Pretreatment of human lung microvascular endothelial cells with SR-B ligands (HDL or LDL), knockdown of SCARB1 expression, or neutralizing SR-BI antibodies significantly reduced A1AT uptake by 30-50%. Scarb1 null mice exhibited decreased A1AT lung content following systemic A1AT administration and reduced lung anti-inflammatory effects of A1AT supplementation during short-term CS exposure. In turn, A1AT supplementation increased lung SR-BI expression and modulated circulating lipoprotein levels in wild-type animals. These studies indicate that SR-BI is an important mediator of A1AT endocytosis in pulmonary endothelium and suggest a cross talk between A1AT and lipoprotein regulation of vascular functions.


Assuntos
Células Endoteliais/metabolismo , Receptores Depuradores Classe B/fisiologia , Fumar/metabolismo , alfa 1-Antitripsina/metabolismo , Animais , Ligação Competitiva , Células Cultivadas , Endocitose , Endotélio Vascular/patologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
Blood ; 124(4): 519-29, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-24740813

RESUMO

We previously showed that immature CD166(+) osteoblasts (OB) promote hematopoietic stem cell (HSC) function. Here, we demonstrate that CD166 is a functional HSC marker that identifies both murine and human long-term repopulating cells. Both murine LSKCD48(-)CD166(+)CD150(+) and LSKCD48(-)CD166(+)CD150(+)CD9(+) cells, as well as human Lin(-)CD34(+)CD38(-)CD49f(+)CD166(+) cells sustained significantly higher levels of chimerism in primary and secondary recipients than CD166(-) cells. CD166(-/-) knockout (KO) LSK cells engrafted poorly in wild-type (WT) recipients and KO bone marrow cells failed to radioprotect lethally irradiated WT recipients. CD166(-/-) hosts supported short-term, but not long-term WT HSC engraftment, confirming that loss of CD166 is detrimental to the competence of the hematopoietic niche. CD166(-/-) mice were significantly more sensitive to hematopoietic stress. Marrow-homed transplanted WT hematopoietic cells lodged closer to the recipient endosteum than CD166(-/-) cells, suggesting that HSC-OB homophilic CD166 interactions are critical for HSC engraftment. STAT3 has 3 binding sites on the CD166 promoter and STAT3 inhibition reduced CD166 expression, suggesting that both CD166 and STAT3 may be functionally coupled and involved in HSC competence. These studies illustrate the significance of CD166 in the identification and engraftment of HSC and in HSC-niche interactions, and suggest that CD166 expression can be modulated to enhance HSC function.


Assuntos
Molécula de Adesão de Leucócito Ativado/fisiologia , Biomarcadores/metabolismo , Células da Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/citologia , Nicho de Células-Tronco/fisiologia , Animais , Antígenos CD/metabolismo , Imunoprecipitação da Cromatina , Citometria de Fluxo , Células-Tronco Hematopoéticas/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores de Superfície Celular/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária
14.
Am J Physiol Endocrinol Metab ; 306(2): E189-96, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24302003

RESUMO

In this study, we used lentiviral-delivered shRNA to generate a clonal line of 3T3-F442A preadipocytes with stable silencing of hepatocyte growth factor (HGF) expression and examined the long-term consequence of this modification on fat pad development. HGF mRNA expression was reduced 94%, and HGF secretion 79% (P < 0.01), compared with preadipocytes treated with nontargeting shRNA. Fat pads derived from HGF knockdown preadipocytes were significantly smaller (P < 0.01) than control pads beginning at 3 days postinjection (0.022 ± 0.003 vs. 0.037 ± 0.004 g), and further decreased in size at day 7 (0.015 ± 0.004 vs. 0.037 ± 0.003 g) and day 14 (0.008 ± 0.002 vs. 0.045 ± 0.007 g). Expression of the endothelial cell genes TIE1 and PECAM1 increased over time in control fat pads (1.6 ± 0.4 vs. 11.4 ± 1.7 relative units at day 3 and 14, respectively; P < 0.05) but not in HGF knockdown fat pads (1.1 ± 0.5 vs. 5.9 ± 2.2 relative units at day 3 and 14). Contiguous vascular structures were observed in control fat pads but were much less developed in HGF knockdown fat pads. Differentiation of preadipocytes to mature adipocytes was significantly attenuated in HGF knockdown fat pads. Fat pads derived from preadipocytes with knockdown of the HGF receptor c-MET were smaller than control pads at day 3 postinjection (0.034 ± 0.002 vs. 0.049 ± 0.004 g; P < 0.05), and remained the same size through day 14. c-MET knockdown fat pads developed a robust vasculature, and preadipocytes differentiated to mature adipocytes. Overall these data suggest that preadipocyte-secreted HGF is an important regulator of neovascularization in developing fat pads.


Assuntos
Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Fator de Crescimento de Hepatócito/fisiologia , Neovascularização Fisiológica/genética , Adipócitos/efeitos dos fármacos , Adipócitos/fisiologia , Tecido Adiposo/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Fator de Crescimento de Hepatócito/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Interferência de RNA/fisiologia , RNA Interferente Pequeno/farmacologia
15.
Biotechniques ; 55(4): 198-203, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24107251

RESUMO

Clinical approaches for tumor treatment often rely on combination therapy where a DNA damaging agent is used in combination with a DNA repair protein inhibitor. For this reason, great efforts have been made during the last decade to identify inhibitors of DNA repair proteins or, alternatively, small molecules that specifically alter protein stability or trafficking. Unfortunately, when studying these drug candidates, classical biochemical approaches are prone to artifacts. The apurinic/apyrimidinic endonuclease (APE1) protein is an essential component of the base excision repair (BER) pathway that is responsible for repairing DNA damage caused by oxidative and alkylating agents. In this work, we combined conditional gene expression knockdown of APE1 protein by RNA interference (RNAi) technology with re-expression of an ectopic recombinant form of APE1 fused with the photoconvertible fluorescent protein (PCFP) Dendra2. Dendra2 did not alter the subcellular localization or endonuclease activity of APE1. We calculated APE1 half-life and compared these results with the classical biochemical approach, which is based on cycloheximide (CHX) treatment. In conclusion, we combined RNAi and in vivo confocal microscopy to study a DNA repair protein demonstrating the feasibility and the advantage of this approach for the study of the cellular dynamic of a DNA repair protein.


Assuntos
Reparo do DNA/efeitos dos fármacos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Proteínas Luminescentes/genética , Microscopia Confocal , Neoplasias/terapia , Cicloeximida/administração & dosagem , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias/genética , Neoplasias/patologia , Oxirredução/efeitos dos fármacos , Interferência de RNA
16.
J Cell Physiol ; 226(3): 800-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20803566

RESUMO

Chronic inflammation is tightly linked to diseases associated with endothelial dysfunction including aberrant angiogenesis. To better understand the endothelial role in pro-inflammatory angiogenesis, we analyzed signaling pathways in continuously activated endothelial cells, which were either chronically exposed to soluble TNF or the reactive oxygen species (ROS) generating H2O2, or express active transmembrane TNF. Testing in an in vitro capillary sprout formation assay, continuous endothelial activation increased angiogenesis dependent on activation of p38 MAP kinase, NADPH oxidase, and matrix metalloproteinases (MMP). p38 MAP kinase- and MMP-9-dependent angiogenesis in our assay system may be part of a positive feed forward autocrine loop because continuously activated endothelial cells displayed up-regulated ROS production and subsequent endothelial TNF expression. The pro-angiogenic role of the p38 MAP kinase in continuously activated endothelial cells was in stark contrast to the anti-angiogenic activity of the p38 MAP kinase in unstimulated control endothelial cells. In vivo, using an experimental prostate tumor, pharmacological inhibition of p38 MAP kinase demonstrated a significant reduction in tumor growth and in vessel density, suggesting a pro-angiogenic role of the p38 MAP kinase in pathological angiogenesis in vivo. In conclusion, our results suggest that continuous activation of endothelial cells can cause a switch of the p38 MAP kinase from anti-angiogenic to pro-angiogenic activities in conditions which link oxidative stress and autocrine TNF production.


Assuntos
Inflamação/complicações , Inflamação/enzimologia , Neovascularização Patológica/complicações , Neovascularização Patológica/enzimologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Inflamação/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Modelos Biológicos , Neoplasias/irrigação sanguínea , Neoplasias/enzimologia , Neoplasias/patologia , Ratos , Solubilidade/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
17.
Comp Med ; 58(3): 282-6, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18589871

RESUMO

Two common procoagulant activities associated with tumors are tissue factor and cancer procoagulant (CP), an activator of coagulation factor X. We have identified a convenient source of CP in transplanted Lobund-Wistar rat PA3 prostate tumors. CP activity was purified from 5 independent transplanted prostate tumors by column chromatography. The protein activated factor X in the absence of TF and factor VII. An antihuman CP antibody recognized rat CP in an ELISA and inactivated CP activity in a chromogenic assay. Lobund-Wistar prostate tumors may provide a convenient animal model useful in determining the role of CP in cancer development.


Assuntos
Cisteína Endopeptidases/metabolismo , Fator X/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática , Masculino , Neoplasias da Próstata/patologia , Ratos , Ratos Wistar
18.
Cancer Lett ; 222(1): 89-94, 2005 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-15837545

RESUMO

Cancer procoagulant (CP) is a cysteine protease produced by fetal and malignant tissues, activating in vitro blood coagulation factor X. It has been demonstrated that CP is able to stimulate blood platelet adhesion to fibrinogen and collagen. The pro-adhesive properties of CP could play an important role in metastatic spread of cancer as well as in primary tumor growth. Effects of anti-CP antibody on the growth of MCF-7 breast cancer cells and on the cells adhesion to vitronectin have been analyzed in vitro. Addition of polyclonal anti-CP antibody to MCF-7 cell culture resulted in 16-18% (P < 0.001) decrease in the cells viability as compared with the control (other antibody or no antibody in the culture). Preincubation of MCF-7 cells with anti-CP antibody reduced the cells adhesion to vitronectin. Further addition of purified CP (0.5-8 microg/ml) to the MCF-7 cells preincubated with anti-CP antibody resulted in complete recovery of adhesive properties of the cells. However, when high concentration (16 microg/ml) of CP was added to the sample, only partial recovery of the adhesive properties by the cells was observed. Results of the experiments support the hypothesis that CP is involved in the growth of cancer cells, but its pro-coagulative properties are of secondary importance. One of the possible mechanisms of the interactions between CP and malignant cell could be the regulation of the cell adhesion processes.


Assuntos
Anticorpos/farmacologia , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisteína Endopeptidases/imunologia , Inibidores do Crescimento/farmacologia , Proteínas de Neoplasias/imunologia , Vitronectina/metabolismo , Adesão Celular/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular/imunologia , Humanos , Vitronectina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA