Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomark J ; 5(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-32352084

RESUMO

Dysregulation of c-FLIP (cellular FADD-like IL-1ß-converting enzyme inhibitory protein) has been shown in several diseases including cancer, Alzheimer's disease, and chronic obstructive pulmonary disease (COPD). c-FLIP is a critical anti-cell death protein often overexpressed in tumors and hematological malignancies and its increased expression is often associated with a poor prognosis. c-FLIP frequently exists as long (c-FLIPL) and short (c-FLIPS) isoforms, regulates its anti-cell death functions through binding to FADD (FAS associated death domain protein), an adaptor protein known to activate caspases-8 and -10 and links c-FLIP to several cell death regulating complexes including the death-inducing signaling complex (DISC) formed by various death receptors. c-FLIP also plays a critical role in necroptosis and autophagy. Furthermore, c-FLIP is able to activate several pathways involved in cytoprotection, proliferation, and survival of cancer cells through various critical signaling proteins. Additionally, c-FLIP can inhibit cell death induced by several chemotherapeutics, anti-cancer small molecule inhibitors, and ionizing radiation. Moreover, c-FLIP plays major roles in aiding the survival of immunosuppressive tumor-promoting immune cells and functions in inflammation, Alzheimer's disease (AD), and chronic obstructive pulmonary disease (COPD). Therefore, c-FLIP can serve as a versatile biomarker for cancer prognosis, a diagnostic marker for several diseases, and an effective therapeutic target. In this article, we review the functions of c-FLIP as an anti-apoptotic protein and negative prognostic factor in human cancers, and its roles in resistance to anticancer drugs, necroptosis and autophagy, immunosuppression, Alzheimer's disease, and COPD.

2.
Sci Rep ; 6: 31596, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27530098

RESUMO

Circulating endothelial microparticles (EMPs) are emerging as biomarkers of chronic obstructive pulmonary disease (COPD) in individuals exposed to cigarette smoke (CS), but their mechanism of release and function remain unknown. We assessed biochemical and functional characteristics of EMPs and circulating microparticles (cMPs) released by CS. CS exposure was sufficient to increase microparticle levels in plasma of humans and mice, and in supernatants of primary human lung microvascular endothelial cells. CS-released EMPs contained predominantly exosomes that were significantly enriched in let-7d, miR-191; miR-126; and miR125a, microRNAs that reciprocally decreased intracellular in CS-exposed endothelium. CS-released EMPs and cMPs were ceramide-rich and required the ceramide-synthesis enzyme acid sphingomyelinase (aSMase) for their release, an enzyme which was found to exhibit significantly higher activity in plasma of COPD patients or of CS-exposed mice. The ex vivo or in vivo engulfment of EMPs or cMPs by peripheral blood monocytes-derived macrophages was associated with significant inhibition of efferocytosis. Our results indicate that CS, via aSMase, releases circulating EMPs with distinct microRNA cargo and that EMPs affect the clearance of apoptotic cells by specialized macrophages. These targetable effects may be important in the pathogenesis of diseases linked to endothelial injury and inflammation in smokers.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Fumaça , Produtos do Tabaco , Animais , Estudos de Casos e Controles , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Células THP-1
3.
J Biol Chem ; 289(30): 21082-97, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24876379

RESUMO

The ceramide-sphingosine 1-phosphate (S1P) rheostat is important in regulating cell fate. Several chemotherapeutic agents, including paclitaxel (Taxol), involve pro-apoptotic ceramide in their anticancer effects. The ceramide-to-S1P pathway is also implicated in the development of pain, raising the intriguing possibility that these sphingolipids may contribute to chemotherapy- induced painful peripheral neuropathy, which can be a critical dose-limiting side effect of many widely used chemotherapeutic agents.We demonstrate that the development of paclitaxel-induced neuropathic pain was associated with ceramide and S1P formation in the spinal dorsal horn that corresponded with the engagement of S1P receptor subtype 1 (S1PR(1))- dependent neuroinflammatory processes as follows: activation of redox-sensitive transcription factors (NFκB) and MAPKs (ERK and p38) as well as enhanced formation of pro-inflammatory and neuroexcitatory cytokines (TNF-α and IL-1ß). Intrathecal delivery of the S1PR1 antagonist W146 reduced these neuroinflammatory processes but increased IL-10 and IL-4, potent anti-inflammatory/ neuroprotective cytokines. Additionally, spinal W146 reversed established neuropathic pain. Noteworthy, systemic administration of the S1PR1 modulator FTY720 (Food and Drug Administration- approved for multiple sclerosis) attenuated the activation of these neuroinflammatory processes and abrogated neuropathic pain without altering anticancer properties of paclitaxel and with beneficial effects extended to oxaliplatin. Similar effects were observed with other structurally and chemically unrelated S1PR1 modulators (ponesimod and CYM-5442) and S1PR1 antagonists (NIBR-14/15) but not S1PR1 agonists (SEW2871). Our findings identify for the first time the S1P/S1PR1 axis as a promising molecular and therapeutic target in chemotherapy-induced painful peripheral neuropathy, establish a mechanistic insight into the biomolecular signaling pathways, and provide the rationale for the clinical evaluation of FTY720 in chronic pain patients.


Assuntos
Antineoplásicos Fitogênicos/efeitos adversos , Neuralgia/induzido quimicamente , Neuralgia/enzimologia , Paclitaxel/efeitos adversos , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Anilidas/farmacologia , Animais , Antineoplásicos Fitogênicos/farmacologia , Citocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Cloridrato de Fingolimode , Humanos , Imunossupressores/farmacologia , Indanos/farmacologia , Lisofosfolipídeos/metabolismo , Masculino , Neuralgia/tratamento farmacológico , Organofosfonatos/farmacologia , Oxidiazóis/farmacologia , Paclitaxel/farmacologia , Propilenoglicóis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Esfingosina/farmacologia , Receptores de Esfingosina-1-Fosfato , Tiazóis/farmacologia , Tiofenos/farmacologia
4.
PLoS One ; 8(5): e62968, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23690971

RESUMO

Increases in ceramide levels have been implicated in the pathogenesis of both acute or chronic lung injury models. However, the role of individual ceramide species, or of the enzymes that are responsible for their synthesis, in lung health and disease has not been clarified. We now show that C24- and C16-ceramides are the most abundant lung ceramide species, paralleled by high expression of their synthetic enzymes, ceramide synthase 2 (CerS2) and CerS5, respectively. Furthermore, the ceramide species synthesis in the lung is homeostatically regulated, since mice lacking very long acyl chain C24-ceramides due to genetic deficiency of CerS2 displayed a ten-fold increase in C16-ceramides and C16-dihydroceramides along with elevation of acid sphingomyelinase and CerS5 activities. Despite relatively preserved total lung ceramide levels, inhibition of de novo sphingolipid synthesis at the level of CerS2 was associated with significant airflow obstruction, airway inflammation, and increased lung volumes. Our results suggest that ceramide species homeostasis is crucial for lung health and that CerS2 dysfunction may predispose to inflammatory airway and airspace diseases.


Assuntos
Regulação Enzimológica da Expressão Gênica , Pulmão/citologia , Pulmão/enzimologia , Proteínas de Membrana/genética , Esfingosina N-Aciltransferase/genética , Proteínas Supressoras de Tumor/genética , Animais , Linhagem Celular , Ceramidas/metabolismo , Feminino , Homeostase , Humanos , Pulmão/metabolismo , Pulmão/fisiologia , Masculino , Proteínas de Membrana/deficiência , Camundongos , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/enzimologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/fisiologia , Esfingosina N-Aciltransferase/deficiência , Proteínas Supressoras de Tumor/deficiência
5.
Am J Respir Cell Mol Biol ; 48(1): 87-93, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23024063

RESUMO

Key host responses to the stress induced by environmental exposure to cigarette smoke (CS) are responsible for initiating pathogenic effects that may culminate in emphysema development. CS increases lung ceramides, sphingolipids involved in oxidative stress, structural alveolar cell apoptosis, and inhibition of apoptotic cell clearance by alveolar macrophages, leading to the development of emphysema-like pathology. RTP801, a hypoxia and oxidative stress sensor, is also increased by CS, and has been recently implicated in both apoptosis and inflammation. We investigated whether inductions of ceramide and RTP801 are mechanistically linked, and evaluated their relative importance in lung cell apoptosis and airspace enlargement in vivo. As reported, direct lung instillation of either RTP801 expression plasmid or ceramides in mice triggered alveolar cell apoptosis and oxidative stress. RTP801 overexpression up-regulated lung ceramide levels 2.6-fold. In turn, instillation of lung ceramides doubled the lung content of RTP801. Cell sorting after lung tissue dissociation into single-cell suspension showed that ceramide triggers both endothelial and epithelial cell apoptosis in vivo. Interestingly, mice lacking rtp801 were protected against ceramide-induced apoptosis of epithelial type II cells, but not type I or endothelial cells. Furthermore, rtp801-null mice were protected from ceramide-induced alveolar enlargement, and exhibited improved static lung compliance compared with wild-type mice. In conclusion, ceramide and RTP801 participate in alveolar cell apoptosis through a process of mutual up-regulation, which may result in self-amplification loops, leading to alveolar damage.


Assuntos
Apoptose/fisiologia , Ceramidas/fisiologia , Proteínas de Ligação a DNA/fisiologia , Pulmão/patologia , Pulmão/fisiopatologia , Fatores de Transcrição/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Enfisema/etiologia , Enfisema/patologia , Enfisema/fisiopatologia , Enfisema/prevenção & controle , Células Endoteliais/patologia , Células Endoteliais/fisiologia , Células Epiteliais/patologia , Células Epiteliais/fisiologia , Feminino , Complacência Pulmonar/fisiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fumar/efeitos adversos , Fumar/patologia , Fumar/fisiopatologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
6.
Mol Med ; 18: 445-54, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22245800

RESUMO

α-1 Antitrypsin (A1AT) is a serpin with a major protective effect against cigarette smoke-induced emphysema development, and patients with mutations of the A1AT gene display a markedly increased risk for developing emphysema. We reported that A1AT protects lung endothelial cells from apoptosis and inhibits caspase-3 activity. It is not clear if cigarette smoking or A1AT mutations alter the caspase-3 inhibitory activity of A1AT and if this serpin alters the function of other caspases. We tested the hypothesis that the caspase-3 inhibitory activity of A1AT is impaired by cigarette smoking and that the A1AT RCL, the key antiprotease domain of the serpin, is required for its interaction with the caspase. We examined the caspase-3 inhibitory activity of human A1AT purified from plasma of actively smoking and nonsmoking individuals, either affected or unaffected with chronic obstructive pulmonary disease. We also tested the caspase inhibitory activity of two mutant forms of A1AT, the recombinant human piZZ and the RCL-deleted (RCL-null) A1AT forms. A1AT purified from the blood of active smokers exhibited marked attenuation in its caspase-3 inhibitory activity, independent of disease status. In vitro exposure of the normal (MM) form of A1AT to cigarette smoke extract reduced its ability to interact with caspase-3, measured by isothermal titration calorimetry, as did the deletion of the RCL, but not the ZZ point mutation. In cell-free assays A1AT was capable of inhibiting all executioner caspases, -3, -7 and especially -6, but not the initiator or inflammatory caspases. The inhibitory effect of A1AT against caspase-6 was tested in vivo, where overexpression of both human MM and ZZ-A1AT via adeno-associated virus transduction significantly protected against apoptosis and against airspace damage induced by intratracheal instillation of caspase-6 in mice. These data indicate a specific inhibitory effect of A1AT on executioner caspases, which is profoundly attenuated by active exposure to cigarette smoking and is dependent on the protein RCL, but is not affected by the PiZZ mutation.


Assuntos
Caspase 3/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumar/metabolismo , Deficiência de alfa 1-Antitripsina/metabolismo , Adulto , Idoso , Animais , Caspase 6/farmacologia , Caspase 7/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
7.
J Clin Invest ; 121(6): 2470-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21576822

RESUMO

Pulmonary emphysema is a disease characterized by alveolar cellular loss and inflammation. Recently, excessive apoptosis of structural alveolar cells has emerged as a major mechanism in the development of emphysema. Here, we investigated the proapoptotic and monocyte chemoattractant cytokine endothelial monocyte-activating protein 2 (EMAPII). Lung-specific overexpression of EMAPII in mice caused simplification of alveolar structures, apoptosis, and macrophage accumulation, compared with that in control transgenic mice. Additionally, in a mouse model of cigarette smoke-induced (CS-induced) emphysema, EMAPII levels were significantly increased in murine lungs. This upregulation was necessary for emphysema development, as neutralizing antibodies to EMAPII resulted in reduced alveolar cell apoptosis, inflammation, and emphysema-associated structural changes in alveoli and small airways and improved lung function. The mechanism of EMAPII upregulation involved an apoptosis-dependent feed-forward loop, since caspase-3 instillation in the lung markedly increased EMAPII expression, while caspase inhibition decreased its production, even in transgenic EMAPII mice. These findings may have clinical significance, as both current smokers and ex-smoker chronic obstructive pulmonary disease (COPD) patients had increased levels of secreted EMAPII in the bronchoalveolar lavage fluid compared with that of nonsmokers. In conclusion, we suggest that EMAPII perpetuates the mechanism of CS-induced lung emphysema in mice and, given its secretory nature, is a suitable target for neutralization antibody therapy.


Assuntos
Citocinas/fisiologia , Proteínas de Neoplasias/fisiologia , Enfisema Pulmonar/genética , Proteínas de Ligação a RNA/fisiologia , Poluição por Fumaça de Tabaco/efeitos adversos , Adulto , Animais , Anticorpos Neutralizantes/uso terapêutico , Apoptose , Câmaras de Exposição Atmosférica , Bronquíolos/efeitos dos fármacos , Bronquíolos/patologia , Líquido da Lavagem Broncoalveolar/química , Caspase 3/toxicidade , Inibidores de Caspase , Citocinas/uso terapêutico , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Imunização Passiva , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas de Neoplasias/uso terapêutico , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/metabolismo , Proteínas de Ligação a RNA/uso terapêutico , Ratos , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/fisiologia , Proteínas Recombinantes de Fusão/uso terapêutico , Fumar/efeitos adversos , Fumar/metabolismo , Adulto Jovem
8.
Am J Respir Crit Care Med ; 183(2): 215-25, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20709815

RESUMO

RATIONALE: Adipose-derived stem cells express multiple growth factors that inhibit endothelial cell apoptosis, and demonstrate substantial pulmonary trapping after intravascular delivery. OBJECTIVES: We hypothesized that adipose stem cells would ameliorate chronic lung injury associated with endothelial cell apoptosis, such as that occurring in emphysema. METHODS: Therapeutic effects of systemically delivered human or mouse adult adipose stem cells were evaluated in murine models of emphysema induced by chronic exposure to cigarette smoke or by inhibition of vascular endothelial growth factor receptors. MEASUREMENTS AND MAIN RESULTS: Adipose stem cells were detectable in the parenchyma and large airways of lungs up to 21 days after injection. Adipose stem cell treatment was associated with reduced inflammatory infiltration in response to cigarette smoke exposure, and markedly decreased lung cell death and airspace enlargement in both models of emphysema. Remarkably, therapeutic results of adipose stem cells extended beyond lung protection by rescuing the suppressive effects of cigarette smoke on bone marrow hematopoietic progenitor cell function, and by restoring weight loss sustained by mice during cigarette smoke exposure. Pulmonary vascular protective effects of adipose stem cells were recapitulated by application of cell-free conditioned medium, which improved lung endothelial cell repair and recovery in a wound injury repair model and antagonized effects of cigarette smoke in vitro. CONCLUSIONS: These results suggest a useful therapeutic effect of adipose stem cells on both lung and systemic injury induced by cigarette smoke, and implicate a lung vascular protective function of adipose stem cell derived paracrine factors.


Assuntos
Tecido Adiposo/citologia , Células-Tronco Adultas/transplante , Lesão Pulmonar/terapia , Enfisema Pulmonar/terapia , Fumar/efeitos adversos , Transplante de Células-Tronco/métodos , Tecido Adiposo/transplante , Animais , Apoptose , Western Blotting , Técnicas de Cultura de Células , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Inflamação/fisiopatologia , Inflamação/prevenção & controle , Lesão Pulmonar/etiologia , Lesão Pulmonar/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Alvéolos Pulmonares/fisiopatologia , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/fisiopatologia , Transplante Heterólogo/métodos , Transplante Homólogo/métodos , Redução de Peso
9.
FASEB J ; 23(9): 3149-58, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19423638

RESUMO

The integrity of lung alveoli is maintained by proper circulating levels of alpha-1 antitrypsin (A1AT). Next to cigarette smoking, A1AT deficiency is a major risk factor for lung emphysema development. We recently reported that in addition to neutralizing neutrophil elastases in the extracellular compartment, A1AT is internalized by lung endothelial cells and inhibits apoptosis. We hypothesized that the intracellular uptake of A1AT by endothelial cells may be required for its protective function; therefore, we studied the mechanisms of A1AT internalization by primary rat lung microvascular endothelial cells and the effect of cigarette smoke on this process both in vitro and in vivo (in mice). Purified A1AT was taken up intracellularly by endothelial cells in a time-dependent, dose-dependent, and conformer-specific manner and was detected in the cytoplasm of endothelial cells of nondiseased human lung sections. Despite a critical role for caveoli in endothelial cell endocytosis in general, specific inhibition of clathrin-mediated, but not caveoli-mediated, endocytosis profoundly decreased A1AT internalization and reversed the A1AT's antiapoptotic action. Further more, A1AT associated with clathrin heavy chains, but not with caveolin-1 in the plasma membrane fraction of endothelial cells. Interestingly, cigarette smoke exposure significantly inhibited A1AT uptake both in endothelial cells and in the mouse lung and altered the intracellular distribution of clathrin heavy chains. Our results suggest that clathrin-mediated endocytosis regulates A1AT intracellular function in the lung endothelium and may be an important determinant of the serpin's protection against developing cigarette smoke-induced emphysema.


Assuntos
Endocitose , Endotélio/fisiologia , Pulmão/citologia , Fumaça/efeitos adversos , alfa 1-Antitripsina/metabolismo , Animais , Clatrina/metabolismo , Enfisema/etiologia , Endotélio/metabolismo , Humanos , Camundongos , Ratos , Ratos Sprague-Dawley , Nicotiana , alfa 1-Antitripsina/sangue
10.
Am J Physiol Lung Cell Mol Physiol ; 295(1): L44-53, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18441093

RESUMO

The molecular events leading to emphysema development include generation of oxidative stress and alveolar cell apoptosis. Oxidative stress upregulates ceramides, proapoptotic signaling sphingolipids that trigger further oxidative stress and alveolar space enlargement, as shown in an experimental model of emphysema due to VEGF blockade. As alveolar cell apoptosis and oxidative stress mutually interact to mediate alveolar destruction, we hypothesized that the oxidative stress generated by ceramide is required for its pathogenic effect on lung alveoli. To model the direct lung effects of ceramide, mice received ceramide intratracheally (Cer(12:0) or Cer(8:0); 1 mg/kg) or vehicle. Apoptosis was inhibited with a general caspase inhibitor. Ceramide augmentation shown to mimic levels found in human emphysema lungs increased oxidative stress, and decreased, independently of caspase activation, the lung superoxide dismutase activity at 48 h. In contrast to their wild-type littermates, transgenic mice overexpressing human Cu/Zn SOD were significantly protected from ceramide-induced superoxide production, apoptosis, and air space enlargement. Activation of lung acid sphingomyelinase in response to ceramide treatment was abolished in the Cu/Zn SOD transgenic mice. Since cigarette smoke-induced emphysema in mice is similarly ameliorated by the Cu/Zn SOD overexpression, we hypothesized that cigarette smoke may induce ceramides in the mouse lung. Utilizing tandem mass spectrometry, we documented increased lung ceramides in adult mice exposed to cigarette smoke for 4 wk. In conclusion, ceramide-induced superoxide accumulation in the lung may be a critical step in ceramide's proapoptotic effect in the lung. This work implicates excessive lung ceramides as amplifiers of lung injury through redox-dependent mechanisms.


Assuntos
Apoptose/efeitos dos fármacos , Ceramidas/toxicidade , Alvéolos Pulmonares/enzimologia , Enfisema Pulmonar/enzimologia , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/biossíntese , Animais , Apoptose/genética , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Transgênicos , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Alvéolos Pulmonares/patologia , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/genética , Enfisema Pulmonar/patologia , Transdução de Sinais/genética , Fumar/genética , Fumar/metabolismo , Fumar/patologia , Esfingomielina Fosfodiesterase/biossíntese , Esfingomielina Fosfodiesterase/genética , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Superóxidos/metabolismo
11.
Am J Respir Cell Mol Biol ; 38(6): 639-46, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18192502

RESUMO

The de novo pathway of ceramide synthesis has been implicated in the pathogenesis of excessive lung apoptosis and murine emphysema. Intracellular and paracellular-generated ceramides may trigger apoptosis and propagate the death signals to neighboring cells, respectively. In this study we compared the sphingolipid signaling pathways triggered by the paracellular- versus intracellular-generated ceramides as they induce lung endothelial cell apoptosis, a process important in emphysema development. Intermediate-chain length (C(8:0)) extracellular ceramides, used as a surrogate of paracellular ceramides, triggered caspase-3 activation in primary mouse lung endothelial cells, similar to TNF-alpha-generated endogenous ceramides. Inhibitory siRNA against serine palmitoyl transferase subunit 1 but not acid sphingomyelinase inhibited both C(8:0) ceramide- and TNF-alpha (plus cycloheximide)-induced apoptosis, consistent with the requirement for activation of the de novo pathway of sphingolipid synthesis. Tandem mass spectrometry analysis detected increases in both relative and absolute levels of C(16:0) ceramide in response to C(8:0) and TNF-alpha treatments. These results implicate the de novo pathway of ceramide synthesis in the apoptotic effects of both paracellular ceramides and TNF-alpha-stimulated intracellular ceramides in primary lung endothelial cells. The serine palmitoyl synthase-regulated ceramides synthesis may contribute to the amplification of pulmonary vascular injury induced by excessive ceramides.


Assuntos
Apoptose/fisiologia , Ceramidas/metabolismo , Células Endoteliais/metabolismo , Pulmão/citologia , Transdução de Sinais/fisiologia , Esfingolipídeos/metabolismo , Animais , Caspase 3/metabolismo , Células Cultivadas , Ceramidas/química , Células Endoteliais/citologia , Ativação Enzimática , Humanos , Camundongos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA