Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
SLAS Discov ; 26(9): 1225-1237, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34218698

RESUMO

High-throughput phenotypic screening is a key driver for the identification of novel chemical matter in drug discovery for challenging targets, especially for those with an unclear mechanism of pathology. For toxic or gain-of-function proteins, small-molecule suppressors are a targeting/therapeutic strategy that has been successfully applied. As with other high-throughput screens, the screening strategy and proper assays are critical for successfully identifying selective suppressors of the target of interest. We executed a small-molecule suppressor screen to identify compounds that specifically reduce apolipoprotein L1 (APOL1) protein levels, a genetically validated target associated with increased risk of chronic kidney disease. To enable this study, we developed homogeneous time-resolved fluorescence (HTRF) assays to measure intracellular APOL1 and apolipoprotein L2 (APOL2) protein levels and miniaturized them to 1536-well format. The APOL1 HTRF assay served as the primary assay, and the APOL2 and a commercially available p53 HTRF assay were applied as counterscreens. Cell viability was also measured with CellTiter-Glo to assess the cytotoxicity of compounds. From a 310,000-compound screening library, we identified 1490 confirmed primary hits with 12 different profiles. One hundred fifty-three hits selectively reduced APOL1 in 786-O, a renal cell adenocarcinoma cell line. Thirty-one of these selective suppressors also reduced APOL1 levels in conditionally immortalized human podocytes. The activity and specificity of seven resynthesized compounds were validated in both 786-O and podocytes.


Assuntos
Apolipoproteína L1/antagonistas & inibidores , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Humanos , Bibliotecas de Moléculas Pequenas
2.
J Pharmacol Exp Ther ; 371(1): 45-55, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31300612

RESUMO

Metabolic dysregulation and mitochondrial dysfunction are important features of acute and chronic tissue injury across species, and human genetics and preclinical data suggest that the master metabolic regulator 5'-adenosine monophosphate-activated protein kinase (AMPK) may be an effective therapeutic target for chronic kidney disease (CKD). We have recently disclosed a pan-AMPK activator, MK-8722, that was shown to have beneficial effects in preclinical models. In this study we investigated the effects of MK-8722 in a progressive rat model of diabetic nephropathy to determine whether activation of AMPK would be of therapeutic benefit. We found that MK-8722 administration in a therapeutic paradigm is profoundly renoprotective, as demonstrated by a reduction in proteinuria (63% decrease in MK-8722 10 mg/kg per day compared with vehicle group) and a significant improvement in glomerular filtration rate (779 and 430 µl/min per gram kidney weight in MK-8722 10 mg/kg per day and vehicle group, respectively), as well as improvements in kidney fibrosis. We provide evidence that the therapeutic effects of MK-8722 may be mediated by modulation of renal mitochondrial quality control as well by attenuating fibrotic and lipotoxic mechanisms in kidney cells. MK-8722 (10 mg/kg per day compared with vehicle group) achieved modest blood pressure reduction (10 mmHg lower for mean blood pressure) and significant metabolic improvements (decreased plasma glucose, triglyceride, and body weight) that could contribute to renoprotection. These data further validate the concept that targeting metabolic dysregulation in CKD could be a potential therapeutic approach. SIGNIFICANCE STATEMENT: We demonstrate in the present study that the pharmacological activation of AMPK using a small-molecule agent provided renoprotection and improved systemic and cellular metabolism. We further indicate that modulation of renal mitochondrial quality control probably contributed to renoprotection and was distinct from the effects of enalapril. Our findings suggest that improving renal mitochondrial biogenesis and function and attenuating fibrosis and lipotoxicity by targeting key metabolic nodes could be a potential therapeutic approach in management of CKD that could complement the current standard of care.


Assuntos
Nefropatias Diabéticas/metabolismo , Hipoglicemiantes/uso terapêutico , Imidazóis/uso terapêutico , Proteínas Quinases/metabolismo , Piridinas/uso terapêutico , Quinases Proteína-Quinases Ativadas por AMP , Idoso , Animais , Benzimidazóis , Glicemia/metabolismo , Pressão Sanguínea , Células Cultivadas , Nefropatias Diabéticas/tratamento farmacológico , Feminino , Taxa de Filtração Glomerular , Humanos , Hipoglicemiantes/farmacologia , Imidazóis/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Piridinas/farmacologia , Ratos , Ratos Zucker , Triglicerídeos/sangue
3.
PLoS One ; 8(1): e54480, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23336002

RESUMO

Diacylglycerol acyltransferase-1 (DGAT1) is a potential therapeutic target for treatment of obesity and related metabolic diseases. However, the degree of DGAT1 inhibition required for metabolic benefits is unclear. Here we show that partial DGAT1 deficiency in mice suppressed postprandial triglyceridemia, led to elevations in glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) only following meals with very high lipid content, and did not protect from diet-induced obesity. Maximal DGAT1 inhibition led to enhanced GLP-1 and PYY secretion following meals with physiologically relevant lipid content. Finally, combination of DGAT1 inhibition with dipeptidyl-peptidase-4 (DPP-4) inhibition led to further enhancements in active GLP-1 in mice and dogs. The current study suggests that targeting DGAT1 to enhance postprandial gut hormone secretion requires maximal inhibition, and suggests combination with DPP-4i as a potential strategy to develop DGAT1 inhibitors for treatment of metabolic diseases.


Assuntos
Diacilglicerol O-Aciltransferase/genética , Hormônios Gastrointestinais/metabolismo , Trato Gastrointestinal/metabolismo , Período Pós-Prandial , Animais , Sequência de Bases , Diacilglicerol O-Aciltransferase/deficiência , Diacilglicerol O-Aciltransferase/metabolismo , Dieta , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Cães , Ativação Enzimática , Feminino , Esvaziamento Gástrico/genética , Dosagem de Genes , Regulação da Expressão Gênica , Ordem dos Genes , Genótipo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Triglicerídeos/sangue
4.
Cell Metab ; 11(2): 101-12, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-20096642

RESUMO

Bombesin receptor subtype 3 (BRS-3) is a G protein coupled receptor whose natural ligand is unknown. We developed potent, selective agonist (Bag-1, Bag-2) and antagonist (Bantag-1) ligands to explore BRS-3 function. BRS-3-binding sites were identified in the hypothalamus, caudal brainstem, and several midbrain nuclei that harbor monoaminergic cell bodies. Antagonist administration increased food intake and body weight, whereas agonists increased metabolic rate and reduced food intake and body weight. Prolonged high levels of receptor occupancy increased weight loss, suggesting a lack of tachyphylaxis. BRS-3 agonist effectiveness was absent in Brs3(-/Y) (BRS-3 null) mice but was maintained in Npy(-/-)Agrp(-/-), Mc4r(-/-), Cnr1(-/-), and Lepr(db/db) mice. In addition, Brs3(-/Y) mice lost weight upon treatment with either a MC4R agonist or a CB1R inverse agonist. These results demonstrate that BRS-3 has a role in energy homeostasis that complements several well-known pathways and that BRS-3 agonists represent a potential approach to the treatment of obesity.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Obesidade/tratamento farmacológico , Peptídeos/uso terapêutico , Receptores da Bombesina/agonistas , Receptores da Bombesina/metabolismo , Animais , Fármacos Antiobesidade/farmacocinética , Peso Corporal/efeitos dos fármacos , Encéfalo/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Peptídeos/farmacocinética , Ratos , Ratos Sprague-Dawley , Receptores da Bombesina/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA