Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1799, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245585

RESUMO

Mucin overproduction is a common feature of chronic airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), and exacerbates their underlying respiratory condition. Surfactant protein D (SP-D) protects against airway diseases through modulation of immune reactions, but whether it also exerts direct effects on airway epithelial cells has remained unclear. Therefore, we sought to investigate the inhibitory role of SP-D on mucin production in airway epithelial cells. We prepared air-liquid interface (ALI) cultures of human primary bronchial epithelial cells (HBECs), which recapitulated a well-differentiated human airway epithelium. Benzo(a)pyrene (BaP), a key toxicant in cigarette smoke, induced mucin 5AC (MUC5AC) production in ALI-cultured HBECs, airway secretory cell lines, and airway epithelia of mice. Then, the protective effects of SP-D against the BaP-induced mucin overproduction were examined. BaP increased MUC5AC production in ALI cultures of HBECs, and this effect was attenuated by SP-D. SP-D also suppressed the BaP-induced phosphorylation of extracellular signal-regulated kinase (ERK) and MUC5AC expression in NCI-H292 goblet-like cells, but not in NCI-H441 club-like cells. Signal regulatory protein α (SIRPα) was found to be expressed in HBECs and NCI-H292 cells but absent in NCI-H441 cells. In NCI-H292 cells, SP-D activated SH2 domain-containing tyrosine phosphatase-1 (SHP-1), downstream of SIRPα, and knockdown of SIRPα abolished the suppressive effects of SP-D on BaP-induced ERK phosphorylation and MUC5AC production. Consistent with these in vitro findings, intratracheal instillation of SP-D prevented the BaP-induced phosphorylation of ERK and Muc5ac expression in airway epithelial cells in a mouse model. SP-D acts directly on airway epithelial cells to inhibit mucin secretion through ligation of SIRPα and SHP-1-mediated dephosphorylation of ERK. Targeting of SIRPα is therefore a potential new therapeutic approach to suppression of mucin hypersecretion in chronic airway diseases such as COPD and asthma.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Células Epiteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Caliciformes/metabolismo , Mucina-5AC/genética , Mucinas , Proteína D Associada a Surfactante Pulmonar
2.
Front Immunol ; 12: 767666, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899719

RESUMO

Bronchial epithelial cells are front sentinels eliciting innate and adaptive immunity to respiratory viral pathogens. Recognition of viral double-stranded RNA induces antiviral interferon (IFN) responses in bronchial epithelial cells. Co-inhibitory molecules programmed cell death 1 ligand 1 (PD-L1) and ligand 2 (PD-L2) were also induced on bronchial epithelial cells, which bind programmed cell death 1 on T cell and inhibit the function of virus-specific cytotoxic T lymphocyte. A previous study showed that antiviral type I IFN increased PD-L1 and PD-L2 expression in cultured melanoma cells. However, it remains unknown whether antiviral IFNs affect PD-L1 and PD-L2 expression in bronchial epithelial cells. In addition, we previously reported that inhibition of PI3Kδ signaling enhanced antiviral IFN responses in human primary bronchial epithelial cells (PBECs). Here we assessed the effect of exogenous IFNs or a selective PI3Kδ inhibitor IC87114 on PD-L1 and PD-L2 in PBECs stimulated with a synthetic double-stranded RNA poly I:C or human metapneumovirus. Treatment with IFNß or IFNλ increased PD-L1 and PD-L2, and IFNß or IFNλ treatment plus poly I:C further increased both expressions. Treatment with IC87114 or transfection with siRNA targeting PI3K p110δ enhanced poly I:C-induced gene and protein expression of PD-L2, whereas IC87114 suppressed poly I:C-induced PD-L1. IC87114 enhanced poly I:C-induced gene expression of IFNß, IFNλ, and IFN-regulated genes via increased TBK1 and IRF3 phosphorylation. Transfection with siIRF3 counteracted the enhancement of poly I:C-induced PD-L2 by IC87114, whereas IC87114 suppressed poly I:C-induced PD-L1 regardless of transfection with siNC or siIRF3. Similar effects of IC87114 on PD-L1 and PD-L2 expression were observed in human metapneumovirus-infected PBECs. We showed for the first time that type I and type III IFNs induced the expression of PD-L1 and PD-L2 in PBECs. Our findings suggest that during viral infections, inhibition of PI3Kδ differentially regulates PD-L1 and PD-L2 expression in bronchial epithelial cells.


Assuntos
Adenina/análogos & derivados , Antígeno B7-H1/imunologia , Células Epiteliais/imunologia , Metapneumovirus/imunologia , Poli I-C/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/imunologia , Quinazolinas/farmacologia , Adenina/farmacologia , Asma/genética , Asma/imunologia , Asma/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Brônquios/citologia , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Interferons/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Fosforilação/efeitos dos fármacos , Proteína 2 Ligante de Morte Celular Programada 1/genética , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo
3.
Sci Rep ; 11(1): 7222, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790367

RESUMO

Recent clinical studies have suggested that inhalation of incense smoke (IS) may result in impaired lung function and asthma. However, there is little experimental evidence to link IS with airway hyperresponsiveness (AHR) and bronchial epithelial barrier function. Using mouse and cell culture models, we evaluated the effects of IS exposure on AHR, expression of multiple epithelial tight junction (TJ)- and adherens junction-associated mRNAs and proteins in the lungs, and the barrier function of bronchial epithelial cells assessed by transepithelial electronic resistance (TEER). Exposure of BALB/c mice to IS increased AHR and inflammatory macrophage recruitment to BALF; reduced claudin-1, -2, -3, -7, -10b, -12, -15, and -18, occludin, zonula occludens-1 [ZO-1], and E-cadherin mRNA expression; and caused discontinuity of claudin-2 and ZO-1 protein immunostaining in lung tissue. IS extract dose-dependently decreased TEER and increased reactive oxygen species production in bronchial epithelial cell cultures. Treatment with N-acetyl-L-cysteine, but not glucocorticosteroids or long-acting ß2-agonists, prevented the detrimental effects of IS. IS exposure can be problematic for respiratory health, as evidenced by AHR, increased recruitment of inflammatory macrophages and disruption of TJ proteins in the lung, and damage to epithelial barrier function. However, antioxidants may be useful for the treatment of IS-induced airway dysfunction.


Assuntos
Brônquios/metabolismo , Pulmão/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Hipersensibilidade Respiratória , Mucosa Respiratória/metabolismo , Fumaça/efeitos adversos , Junções Aderentes/metabolismo , Junções Aderentes/patologia , Animais , Brônquios/patologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/patologia , Mucosa Respiratória/patologia , Proteínas de Junções Íntimas/metabolismo
4.
Front Immunol ; 11: 432, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218789

RESUMO

Viral infections of the airway can exacerbate respiratory diseases, such as asthma or chronic obstructive pulmonary disease (COPD), and accelerate disease progression. Phosphoinositide 3-kinase (PI3K)δ, a class 1A PI3K, has been studied as a potential target for achieving anti-oncogenic and anti-inflammatory effects. However, the role of PI3Kδ in antiviral responses is poorly understood. Using a synthetic double-stranded RNA poly I:C and a selective PI3Kδ inhibitor IC87114, we investigated the role of PI3Kδ signaling in poly I:C-induced expression of the T lymphocyte-inhibitory molecule programmed death 1 ligand 1 (PD-L1), inflammatory responses and antiviral interferon (IFN) responses. C57BL/6N mice were treated with IC87114 or vehicle by intratracheal (i.t.) instillation followed by i.t. administration of poly I:C. Poly I:C increased PD-L1 expression on epithelial cells, lymphocytes, macrophages, and neutrophils in the lungs and IC87114 suppressed poly I:C-induced PD-L1 expression on epithelial cells and neutrophils possibly via inhibition of the Akt/mTOR signaling pathway. IC87114 also attenuated poly I:C-induced increases in numbers of total cells, macrophages, neutrophils and lymphocytes, as well as levels of KC, IL-6 and MIP-1ß in bronchoalveolar lavage fluid. Gene expression of IFNß, IFNλ2 and IFN-stimulated genes (ISGs) were upregulated in response to poly I:C and a further increase in gene expression was observed following IC87114 treatment. In addition, IC87114 enhanced poly I:C-induced phosphorylation of IRF3. We assessed the effects of IC87114 on human primary bronchial epithelial cells (PBECs). IC87114 decreased poly I:C-induced PD-L1 expression on PBECs and secretion of IL-6 and IL-8 into culture supernatants. IC87114 further enhanced poly I:C- induced increases in the concentrations of IFNß and IFNλ1/3 in culture supernatants as well as upregulated gene expression of ISGs in PBECs. Similar results were obtained in PBECs transfected with siRNA targeting the PIK3CD gene encoding PI3K p110δ, and stimulated with poly I:C. In human metapneumovirus (hMPV) infection of PBECs, IC87114 suppressed hMPV-induced PD-L1 expression and reduced viral replication without changing the production levels of IFNß and IFNλ1/3 in culture supernatants. These data suggest that IC87114 may promote virus elimination and clearance through PD-L1 downregulation and enhanced antiviral IFN responses, preventing prolonged lung inflammation, which exacerbates asthma and COPD.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Pulmão/imunologia , Metapneumovirus/fisiologia , Neutrófilos/imunologia , Infecções por Paramyxoviridae/imunologia , Mucosa Respiratória/fisiologia , Adenina/administração & dosagem , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Células Cultivadas , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Citocinas/metabolismo , Humanos , Interferons/metabolismo , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poli I-C/imunologia , Quinazolinas/administração & dosagem , Quinazolinas/farmacologia , RNA Interferente Pequeno/genética , Transdução de Sinais , Replicação Viral
5.
Respir Res ; 20(1): 251, 2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31706310

RESUMO

BACKGROUND: Airway epithelial barrier function is maintained by the formation of tight junctions (TJs) and adherens junctions (AJs). Inhalation of cigarette smoke causes airway epithelial barrier dysfunction and may contribute to the pathogenesis of chronic lung diseases such as asthma and chronic obstructive pulmonary disease (COPD). We assessed the effects of cigarette smoke on barrier function and expression of multiple TJ and AJ proteins in the bronchial epithelium. We also examined whether treatment with glucocorticosteroids (GCSs), long-acting ß2-agonists (LABAs), and human cathelicidin LL-37 can protect against cigarette smoke extract (CSE)-induced barrier dysfunction. METHODS: Calu-3 cells cultured at the air-liquid interface were pretreated with or without GCSs, LABAs, GCSs plus LABAs, or LL-37, and subsequently exposed to CSE. Barrier function was assessed by transepithelial electronic resistance (TEER) measurements. Gene and protein expression levels of TJ and AJ proteins were analyzed by quantitative PCR and western blotting, respectively. Immunofluorescence staining of TJ and AJ proteins was performed. RESULTS: CSE decreased TEER and increased permeability in a concentration-dependent manner. CSE suppressed gene expression of claudin-1, claudin-3, claudin-4, claudin-7, claudin-15, occludin, E-cadherin, junctional adhesion molecule-A (JAM-A) and zonula occludens-1 (ZO-1) within 12 h post-CSE exposure, while suppressed protein expression levels of occludin at 12 h. CSE-treated cells exhibited discontinuous or attenuated immunostaining for claudin-1, claudin-3, claudin-4, occludin, ZO-1, and E-cadherin compared with untreated cells. GCS treatment partially restored CSE-induced TEER reduction, while LABA treatment had no effect. GCS and LABA combination treatment had no additive effect on CSE-induced TEER reduction and gene suppression of TJ and AJ proteins. Human cathelicidin LL-37 counteracted CSE-induced TEER reduction and prevented disruption of occludin and ZO-1. LL-37 also attenuated CSE-induced decreases in gene and protein expression levels of occludin. CONCLUSIONS: CSE caused airway epithelial barrier dysfunction and simultaneously downregulated multiple TJ and AJ proteins. GCS and LABA combination treatment had no additive effect on CSE-induced TEER reduction. LL-37 counteracted CSE-induced TEER reduction and prevented disruption of occludin and ZO-1. Use of LL-37 to counteract airway epithelial barrier dysfunction may have significant benefits for respiratory diseases such as asthma and COPD.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Brônquios/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Fumaça/efeitos adversos , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Produtos do Tabaco/efeitos adversos , Brônquios/metabolismo , Linhagem Celular , Impedância Elétrica , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Permeabilidade , Transdução de Sinais , Proteínas de Junções Íntimas/genética , Junções Íntimas/genética , Junções Íntimas/metabolismo , Catelicidinas
6.
Respirology ; 23(4): 419-420, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29215209
7.
Biochem Biophys Res Commun ; 494(1-2): 242-248, 2017 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-29032197

RESUMO

Double-stranded RNA derived from viruses induces host immune responses. PD-L1, also known as B7-H1, is an immune-checkpoint molecule associated with the escape of viruses from host immune systems, which plays a role in the persistence of viral infection, resulting in exacerbations of underlying diseases such as asthma and chronic obstructive pulmonary disease. Interleukin (IL)-22 is produced from various immune cells and has protective properties on mucosal tissue. The binding of IL-22 to IL-22 receptor induces STAT3 activation. We investigated the effect of IL-22 on the expression in airway epithelial cells in vitro and in mouse lungs in vivo after the stimulation with an analog of viral double-stranded RNA, polyinosinic-polycytidylic acid (poly I:C). Stimulation with poly I:C upregulated PD-L1 expression on BEAS-2B cells. This upregulation of PD-L1 was attenuated by IL-22 administration. STAT3 phosphorylation was induced by IL-22 and poly I:C. Treatment of cells with STAT3 siRNA abolished the effect of IL-22 on the poly I:C-induced upregulation of PD-L1. This upregulation of PD-L1 was also attenuated by IL-11, a cytokine inducing STAT3 phosphorylation, in BEAS-2B cells. In mouse lung cells in vivo, IL-22 suppressed poly I:C-induced upregulation of PD-L1. These results suggest that IL-22 attenuates virus-induced upregulation of PD-L1 in airway epithelial cells via a STAT3-dependent mechanism.


Assuntos
Antígeno B7-H1/metabolismo , Interleucinas/metabolismo , RNA Viral/imunologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Linhagem Celular , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Poli I-C/imunologia , Receptores de Interleucina/metabolismo , Mucosa Respiratória/virologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Regulação para Cima , Interleucina 22
8.
J Infect Dis ; 215(10): 1536-1545, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28379462

RESUMO

Background: Human metapneumovirus (hMPV) infection is implicated in exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Research into the pathogenesis of infection is restricted to animal models, and information about hMPV replication and inflammatory and immune responses in human disease is limited. Methods: Human primary bronchial epithelial cells (PBECs) from healthy and asthmatic subjects and those with COPD were infected with hMPV, with or without glucocorticosteroid (GCS) exposure. Viral replication, inflammatory and immune responses, and apoptosis were analyzed. We also determined whether adjuvant interferon (IFN) can blunt hMPV infection in vitro and in a murine model. Results: hMPV infected human PBECs and viral replication was enhanced in cells from patients with COPD. The virus induced gene expression of IFN-stimulated gene 56 (ISG56) and IFN-ß, as well as IFN-γ-inducible protein 10 (IP-10) and regulated on activation, normal T cell expressed and secreted (RANTES), and more so in cells from patients with COPD. GCS exposure enhanced hMPV replication despite increased IFN expression. Augmented virus replication associated with GCS was mediated by reduced apoptosis via induction of antiapoptotic genes. Adjuvant IFN treatment suppressed hMPV replication in PBECs and reduced hMPV viral titers and inflammation in vivo. Conclusions: hMPV infects human PBECs, eliciting innate and inflammatory responses. Replication is enhanced by GCS and adjuvant IFN is an effective treatment, restricting virus replication and proinflammatory consequences of hMPV infections.


Assuntos
Glucocorticoides/farmacologia , Interferon gama/farmacologia , Metapneumovirus , Infecções por Paramyxoviridae/virologia , Doença Pulmonar Obstrutiva Crônica/virologia , Animais , Apoptose/efeitos dos fármacos , Asma/virologia , Brônquios/citologia , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Mucosa Respiratória/citologia , Replicação Viral/efeitos dos fármacos
9.
Respir Investig ; 53(1): 22-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25542600

RESUMO

BACKGROUND: Elucidating the prevalence of asthma and chronic obstructive pulmonary disease (COPD) is important for designing a public health strategy. Recent studies have discriminated a phenotype of COPD with variable airflow limitation (COPD-VAL) associated with asthma-COPD overlap syndrome. Its prevalence remains uncertain. The age and occupational distributions in the town of Hisayama and in Japan are nearly identical. Each disease's prevalence was estimated for the town's residents. METHODS: In 2008, town residents (≥ 40 years) were solicited to participate in a health checkup. Individuals with abnormal spirometry (forced expiratory volume in 1s/forced vital capacity [FEV1/FVC]<70% and/or %FVC<80%) were recommended for further evaluations. Two pulmonologists in a blinded fashion reviewed their medical records, including bronchodilator reversibility. Individuals with airflow limitation were classified as having asthma, COPD, COPD-VAL, or other diseases. The prevalence of each disease was then estimated. RESULTS: A total of 2100 residents (43.4% of residents in the age group) completed spirometry. In 455 residents with abnormal spirometry, 190 residents had further evaluations, and the medical records of 174 residents were reviewed. The prevalence of asthma with airflow limitation, COPD, and COPD-VAL, were 2.0%, 8.4%, and 0.9%, respectively. The prevalence of COPD and COPD-VAL were higher in men and smokers than in women and never-smokers. The prevalence of COPD, but not COPD-VAL or asthma, increased with age. CONCLUSION: The prevalence of asthma with airflow limitation, COPD, and COPD-VAL were estimated in a population of residents (≥ 40 years) in Hisayama.


Assuntos
Asma/epidemiologia , Asma/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Ventilação Pulmonar , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Povo Asiático , Asma/complicações , Feminino , Volume Expiratório Forçado , Humanos , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , Prevalência , Doença Pulmonar Obstrutiva Crônica/complicações , Fatores Sexuais , Fumar/efeitos adversos , Fumar/epidemiologia , Espirometria , Capacidade Vital
10.
Int Immunol ; 25(11): 643-50, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23988617

RESUMO

Efferocytosis, which is the homeostatic phagocytosis of apoptotic cells, prevents the release of toxic intracellular contents and subsequent tissue damage. Impairment of efferocytosis was reported in alveolar macrophages (AMs) of patients with chronic obstructive pulmonary disease (COPD), a common disease caused by smoking. In COPD, histone deacetylase (HDAC) activity is reduced in AMs. We investigated whether the reduction of HDAC activity is associated with the impairment of efferocytosis. Murine AMs were collected by bronchoalveolar lavage and their ability to efferocytose apoptotic human polymorphonuclear leukocytes was assessed. Pre-treatment of AMs with cigarette smoke extract (CSE) or trichostatin A (TSA), an HDAC inhibitor, suppressed efferocytosis and CSE reduced HDAC activity. TSA inhibited the activity of Rac, a key mediator of efferocytosis. These TSA-induced impairments were restored by treatment of AMs with aminophylline, a potent activator of HDAC. To further elucidate the underlying mechanism, we explored a role of CD9 in TSA-induced impairment of efferocytosis. CD9 is a transmembrane protein of the tetraspanin family that facilitates the uptake of several pathogens and other material. TSA profoundly down-regulated the expression of CD9 on AMs. The expression of CD9 was partly down-regulated by the Rac inhibitor. Pretreatment with an anti-CD9 mAb or CD9 small interfering RNA inhibited efferocytosis, which was attributable to the reduced binding of AMs to apoptotic cells. These results suggest that smoking impairs efferocytosis via inhibition of HDAC/Rac/CD9 pathways. Aminophylline/theophylline is effective in restoring the impairment of efferocytosis and might have benefit for the treatment of patients with COPD.


Assuntos
Apoptose/imunologia , Histona Desacetilases/metabolismo , Macrófagos Alveolares/patologia , Neutrófilos/citologia , Fagocitose/imunologia , Fumar/efeitos adversos , Tetraspanina 29/antagonistas & inibidores , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Animais , Voluntários Saudáveis , Histona Desacetilases/imunologia , Humanos , Macrófagos Alveolares/enzimologia , Macrófagos Alveolares/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/enzimologia , Neutrófilos/imunologia , Fumar/imunologia , Tetraspanina 29/imunologia , Tetraspanina 29/metabolismo , Proteínas rac de Ligação ao GTP/imunologia , Proteínas rac de Ligação ao GTP/metabolismo
11.
Biochem Biophys Res Commun ; 435(2): 195-201, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23660190

RESUMO

Airway viral infection disturbs the health-related quality of life. B7-H1 (also known as PD-L1) is a coinhibitory molecule associated with the escape of viruses from the mucosal immunity, leading to persistent infection. Most respiratory viruses generate double-stranded (ds) RNA during replication. The stimulation of cultured airway epithelial cells with an analog of viral dsRNA, polyinosinic-polycytidylic acid (poly IC) upregulates the expression of B7-H1 via activation of the nuclear factor κB(NF-κB). The mechanism of upregulation was investigated in association with phosphatidylinositol 3-kinases (PI3Ks). Poly IC-induced upregulation of B7-H1 was profoundly suppressed by a pan-PI3K inhibitor and partially by an inhibitor or a small interfering (si)RNA for PI3Kδ in BEAS-2B cells. Similar results were observed in the respiratory syncytial virus-infected cells. The expression of p110δ was detected by Western blot and suppressed by pretreatment with PI3Kδ siRNA. The activation of PI3Kδ is typically induced by oxidative stress. The generation of reactive oxygen species was increased by poly IC. Poly IC-induced upregulation of B7-H1 was attenuated by N-acetyl-L-cysteine, an antioxidant, or by oxypurinol, an inhibitor of xanthine oxidase. Poly IC-induced activation of NF-κB was suppressed by a pan-PI3K inhibitor but not by a PI3Kδ inhibitor. These results suggest that PI3Kδ mediates dsRNA-induced upregulation of B7-H1 without affecting the activation of NF-κB.


Assuntos
Antígeno B7-H1/biossíntese , DNA Viral/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , RNA de Cadeia Dupla/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Linhagem Celular , DNA Viral/administração & dosagem , DNA Viral/genética , Humanos , RNA de Cadeia Dupla/administração & dosagem , RNA de Cadeia Dupla/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
12.
Am J Respir Cell Mol Biol ; 46(6): 740-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21799119

RESUMO

Activation of innate immunity against viruses in the respiratory tracts affects the development of asthma. Most respiratory viruses generate double-stranded (ds)RNA during their replication. We recently showed that a low-dose administration of polyinosinic polycytidylic acid (poly IC), a mimetic of viral dsRNA, during allergen sensitization augments airway eosinophilia and hyperresponsiveness in mice via enhanced production of IL-13 from T cells. However, a phenotype of asthma under severer load of dsRNA remains unknown. d-galactosamine (d-GalN) is known as a strong sensitizer of poly IC. Mice were treated with poly IC plus d-GalN during allergen sensitization. A sublethal dose of poly IC/d-GalN augmented airway eosinophilia and CD4(+) T-cell accumulation in the lungs but not airway hyperresponsiveness. The augmented inflammation was associated with decreased IL-10 in the bronchoalveolar lavage fluid and decreased Foxp3(+) regulatory T cells in the lungs. Serum IL-6 was prominently higher in the mice treated with poly IC/d-GalN than in that with poly IC alone or d-GalN alone. Poly IC/d-GalN did not affect IL-17-producing T cells in the lungs. Poly IC/d-GalN failed to augment airway eosinophilia after anti-IL-10 receptor monoclonal antibody treatment during allergen challenge. Finally, anti-IL-6 receptor monoclonal antibody treatment before poly IC/d-GalN completely prevented the decrease of IL-10 and Foxp3(+) regulatory T cells and the augmentation of airway inflammation. These results indicate that enhanced production of IL-6 by poly IC/d-GalN induces the augmentation of allergic inflammation via suppression of Foxp3(+) regulatory T-cell/IL-10 axis. IL-6 may be a target for preventing asthma augmentation related to severe virus infection.


Assuntos
Fatores de Transcrição Forkhead/imunologia , Hipersensibilidade/imunologia , Inflamação/imunologia , Interleucina-10/imunologia , Interleucina-6/biossíntese , RNA de Cadeia Dupla/fisiologia , Linfócitos T/imunologia , Animais , Asma/imunologia , Citometria de Fluxo , Camundongos
13.
Am J Respir Cell Mol Biol ; 45(1): 31-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20802088

RESUMO

Clinical and epidemiological studies have shown the contribution of viral infection to the development of allergic asthma. Many RNA viruses, pathogenic for the respiratory tract, generate double-stranded (ds)RNA during their replication. Typical innate immune responses triggered by dsRNA involve the endosomal and cytoplasmic pathways. The former is mediated by Toll/IL-1R domain-containing adaptor inducing IFN-ß (TRIF), and the latter by IFN-ß promoter stimulator 1 (IPS-1). We explored the effect of polyinocinic polycytidilic acid, a synthetic dsRNA, on the development of an asthma phenotype in mice. Administration of dsRNA during ovalbumin sensitization augmented airway eosinophilia and airway hyperresponsiveness after an antigen challenge, which was associated with enhanced induction of IL-13-producing CD8(+) T cells. The augmentation was induced in IPS-1-deficient mice but not in TRIF-deficient mice. The interactions between dendritic cells (DCs) and T cells are regulated by B7-family costimulatory molecules, including B7-H1 (also known as PD-L1), a putative ligand for programmed death-1 (PD-1). Treatment of bone marrow-derived DCs with dsRNA enhanced B7-H1 expression in a TRIF-dependent manner. Additionally, dsRNA increased B7-H1 expression on DCs in the draining lymph nodes of ovalbumin-sensitized mice. The augmentation of the asthma phenotype was prevented by the treatment of mice with anti-B7-H1 mAb but not with anti-PD-1 mAb. The augmentation was not induced in B7-H1-deficient mice. These results suggest that dsRNA-triggered activation of the innate immune system in sensitization leads to augmentation of the asthma phenotype via IL-13 mainly from CD8(+) T cells. B7-H1 plays a crucial role in the process without requiring interaction with PD-1.


Assuntos
Asma/induzido quimicamente , Asma/imunologia , Antígeno B7-1/imunologia , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Glicoproteínas de Membrana/imunologia , Peptídeos/imunologia , RNA de Cadeia Dupla/efeitos adversos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Asma/genética , Asma/metabolismo , Asma/patologia , Antígeno B7-1/biossíntese , Antígeno B7-1/genética , Antígeno B7-H1 , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Interleucina-13/biossíntese , Interleucina-13/genética , Interleucina-13/imunologia , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Ovalbumina/efeitos adversos , Ovalbumina/farmacologia , Peptídeos/genética , Fenótipo , Eosinofilia Pulmonar/induzido quimicamente , Eosinofilia Pulmonar/genética , Eosinofilia Pulmonar/imunologia , Eosinofilia Pulmonar/patologia , RNA de Cadeia Dupla/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA