Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 108: 129803, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38777280

RESUMO

Targeted delivery of radionuclides to tumors is significant in theranostics applications for precision medicine. Pre-targeting, in which a tumor-targeting vehicle and a radionuclide-loaded effector small molecule are administered separately, holds promise since it can reduce unnecessary internal radiation exposure of healthy cells and can minimize radiation decay. The success of the pre-targeting delivery requires an in vivo-stable tumor-targeting vehicle selectively binding to tumor antigens and an in vivo-stable small molecule effector selectively binding to the vehicle accumulated on the tumor. We previously reported a drug delivery system composed of a low-immunogenic streptavidin with weakened affinity to endogenous biotin and a bis-iminobiotin with high affinity to the engineered streptavidin. It was, however, unknown whether the bis-iminobiotin is stable in vivo when administered alone for the pre-targeting applications. Here we report a new in vivo-stable bis-iminobiotin derivative. The keys to success were the identification of the degradation site of the original bis-iminobiotin treated with mouse plasma and the structural modification of the degradation site. We disclosed the successful pre-targeting delivery of astatine-211 (211At), α-particle emitter, to the CEACAM5-positive tumor in xenograft mouse models.


Assuntos
Biotina , Estreptavidina , Animais , Estreptavidina/química , Camundongos , Biotina/química , Humanos , Sistemas de Liberação de Medicamentos , Linhagem Celular Tumoral , Mutação , Estrutura Molecular
2.
Angew Chem Int Ed Engl ; 63(31): e202405605, 2024 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-38757875

RESUMO

Pathogenic protein aggregates, called amyloids, are etiologically relevant to various diseases, including neurodegenerative Alzheimer disease. Catalytic photooxygenation of amyloids, such as amyloid-ß (Aß), reduces their toxicity; however, the requirement for light irradiation may limit its utility in large animals, including humans, due to the low tissue permeability of light. Here, we report that Cypridina luciferin analogs, dmCLA-Cl and dmCLA-Br, promoted selective oxygenation of amyloids through chemiexcitation without external light irradiation. Further structural optimization of dmCLA-Cl led to the identification of a derivative with a polar carboxylate functional group and low cellular toxicity: dmCLA-Cl-acid. dmCLA-Cl-acid promoted oxygenation of Aß amyloid and reduced its cellular toxicity without photoirradiation. The chemiexcited oxygenation developed in this study may be an effective approach to neutralizing the toxicity of amyloids, which can accumulate deep inside the body, and treating amyloidosis.


Assuntos
Oxigênio , Humanos , Oxigênio/química , Oxigênio/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/química , Amiloide/metabolismo , Amiloide/química , Estrutura Molecular , Animais
3.
Cancer Sci ; 113(12): 4350-4362, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36121618

RESUMO

Antibody-mimetic drug conjugate is a novel noncovalent conjugate consisting of an antibody-mimetic recognizing a target molecule on the cancer cell surface and low-molecular-weight payloads that kill the cancer cells. In this study, the efficacy of a photo-activating antibody-mimetic drug conjugate targeting HER2-expressing tumors was evaluated in mice, by using the affibody that recognize HER2 (ZHER2:342 ) as a target molecule and an axially substituted silicon phthalocyanine (a novel potent photo-activating compound) as a payload. The first treatment with the photo-activating antibody-mimetic drug conjugates reduced the size of all HER2-expressing KPL-4 xenograft tumors macroscopically. However, during the observation period, relapsed tumors gradually appeared in approximately 50% of the animals. To evaluate the efficacy of repeated antibody-mimetic drug conjugate treatment, animals with relapsed tumors were treated again with the same regimen. After the second observation period, the mouse tissues were examined histopathologically. Unexpectedly, all relapsed tumors were eradicated, and all animals were diagnosed with pathological complete remission. After the second treatment, skin wounds healed rapidly, and no significant side effects were observed in other organs, except for occasional microscopic granulomatous tissues beneath the serosa of the liver in a few mice. Repeated treatments seemed to be well tolerated. These results indicate the promising efficacy of the repeated photo-activating antibody-mimetic drug conjugate treatment against HER2-expressing tumors.


Assuntos
Imunoconjugados , Humanos , Animais , Camundongos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Receptor ErbB-2/metabolismo , Linhagem Celular Tumoral , Anticorpos
4.
Biochem Biophys Res Commun ; 609: 183-188, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35452959

RESUMO

Effective cancer immunotherapy requires physical contact of T cells with cancer cells. However, tumors often constitute special microenvironments that exclude T cells and resist immunotherapy. Cholesterol sulfate (CS) is a product of sulfotransferase SULT2B1b and acts as an endogenous inhibitor of DOCK2, a Rac activator essential for migration and activation of lymphocytes. We have recently shown that cancer-derived CS prevents tumor infiltration by effector T cells. Therefore, SULT2B1b may be a therapeutic target to dampen CS-mediated immune evasion. Here, we identified 3ß-hydroxy-5-cholenoic acid (3ß-OH-5-Chln) as a cell-active inhibitor of SULT2B1b. 3ß-OH-5-Chln inhibited the cholesterol sulfotransferase activity of SULT2B1b in vitro and suppressed CS production from cancer cells expressing SULT2B1b. In vivo administration of 3ß-OH-5-Chln locally reduced CS level in murine CS-producing tumors and increased infiltration of CD8+ T cells. When combined with immune checkpoint blockade or antigen-specific T cell transfer, 3ß-OH-5-Chln suppressed the growth of CS-producing tumors. These results demonstrate that pharmacological inhibition of SULT2B1b can promote antitumor immunity through suppressing CS-mediated T cell exclusion.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Ésteres do Colesterol , Proteínas Ativadoras de GTPase , Fatores de Troca do Nucleotídeo Guanina , Camundongos , Neoplasias/tratamento farmacológico , Sulfotransferases , Microambiente Tumoral
5.
Protein Expr Purif ; 192: 106043, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34973460

RESUMO

Antibody-drug conjugates (ADCs) are a major therapeutic tool for the treatment of advanced cancer. Malignant cells in advanced cancer often display multiple genetic mutations and become resistant to monotherapy. Therefore, a therapeutic regimen that simultaneously targets multiple molecules with multiple payloads is desirable. However, the development of ADCs is hampered by issues in biopharmaceutical manufacturing and the complexity of the conjugation process of low-molecular-weight payloads to biologicals. Here, we report antibody mimetic-drug conjugates (AMDCs) developed by exploiting the non-covalent binding property of payloads based on high-affinity binding of mutated streptavidin and modified iminobiotin. Miniprotein antibodies were fused to a low immunogenic streptavidin variant, which was then expressed in Escherichia coli inclusion bodies, solubilized, and refolded into functional tetramers. The AMDC developed against human epidermal growth factor receptor 2 (HER2) effectively killed cultured cancer cells using bis-iminobiotin conjugated to photo-activating silicon phthalocyanine. The HER2-targeting AMDC was also effective in vivo against a mouse KPL-4 xenograft model. This AMDC platform provides rapid, stable, and high-yield therapeutics against multiple targets.


Assuntos
Escherichia coli/metabolismo , Expressão Gênica , Imunoconjugados/genética , Animais , Biotina/administração & dosagem , Biotina/análogos & derivados , Biotina/química , Biotina/genética , Biotina/imunologia , Linhagem Celular Tumoral , Clonagem Molecular , Escherichia coli/genética , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/química , Imunoconjugados/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Dobramento de Proteína , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Estreptavidina/administração & dosagem , Estreptavidina/química , Estreptavidina/genética , Estreptavidina/imunologia
6.
J Am Chem Soc ; 143(47): 19844-19855, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34787412

RESUMO

Post-translational modifications (PTMs) of proteins are a biological mechanism for reversibly controlling protein function. Synthetic protein modifications (SPMs) at specific canonical amino acids can mimic PTMs. However, reversible SPMs at hydrophobic amino acid residues in proteins are especially limited. Here, we report a tyrosine (Tyr)-selective SPM utilizing persistent iminoxyl radicals, which are readily generated from sterically hindered oximes via single-electron oxidation. The reactivity of iminoxyl radicals with Tyr was dependent on the steric and electronic demands of oximes; isopropyl methyl piperidinium oxime 1f formed stable adducts, whereas the reaction of tert-butyl methyl piperidinium oxime 1o was reversible. The difference in reversibility between 1f and 1o, differentiated only by one methyl group, is due to the stability of iminoxyl radicals, which is partly dictated by the bond dissociation energy of oxime O-H groups. The Tyr-selective modifications with 1f and 1o proceeded under physiologically relevant, mild conditions. Specifically, the stable Tyr-modification with 1f introduced functional small molecules, including an azobenzene photoswitch, to proteins. Moreover, masking critical Tyr residues by SPM with 1o, and subsequent deconjugation triggered by the treatment with a thiol, enabled on-demand control of protein functions. We applied this reversible Tyr modification with 1o to alter an enzymatic activity and the binding affinity of a monoclonal antibody with an antigen upon modification/deconjugation. The on-demand ON/OFF switch of protein functions through Tyr-selective and reversible covalent-bond formation will provide unique opportunities in biological research and therapeutics.


Assuntos
Radicais Livres/química , Iminas/química , Peptídeos/química , Proteínas/química , Tirosina/química , Sequência de Aminoácidos , Animais , Canavalia/química , Bovinos , Galinhas , Humanos , Oximas/química
7.
Acc Chem Res ; 54(9): 2313-2322, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33847478

RESUMO

Life emerges from complicated and sophisticated chemical networks comprising numerous biomolecules (e.g., nucleic acids, proteins, sugars, and lipids) and chemical reactions catalyzed by enzymes. Dysregulation of these chemical networks is linked to the emergence of diseases. Our research goal is to develop abiotic chemical catalysts that can intervene into life's chemical networks by complementing, surrogating, or exceeding enzymes in living cells or multicellular organisms such as animals or plants. Mending dysregulated networks in pathological states by the chemical catalysts will lead to a new medicinal strategy, catalysis medicine. This research direction will also advance catalysis science, because highly active and selective chemical catalysts must be developed to promote the intended reactions in a complex mixture of life in aqueous solution at body temperature.Epigenetics exists at the crossroads of chemistry, biology, and medicine and is a suitable field to pursue this idea. Post-translational modifications (PTMs) of histones epigenetically regulate chromatin functions and gene transcription and are intimately related to various diseases. Investigating the functions and cross-talk of histone PTMs is crucial for mechanistic elucidation of diseases and their treatments. We launched a program to develop chemical catalysts enabling endogenous histone modifications in living cells without relying on enzymes. We reported two types of chemical catalyst systems so far for synthetic histone acylation. The first system comprised a DNA-binding oligo-4-dimethylaminopyridine (DMAP) catalyst and a phenyl ester acyl donor, PAc-gly. This system promoted histone hyperacetylation in Xenopus laevis sperm chromatin. Using the thus-synthesized hyperacetylated sperm chromatin, we found a novel relationship between histone acetylation and DNA replication. The second system involved a histone-binding catalyst, LANA-DSH, composed of a catalytic motif (DSH) and a histone-binding peptide ligand (LANA), and thioester acyl donors, including endogenous acyl-CoA. This system regioselectively (i.e., selectively to a lysine residue at a specific position) acylated lysine 120 of histone H2B (H2BK120), a lysine residue proximal to the DSH motif defined by binding of the LANA ligand to a nucleosome substrate. This catalyst system was optimized to achieve H2BK120-selective acetylation in living cells without genetic manipulation. The synthetically introduced H2BK120Ac inhibited enzyme-catalyzed ubiquitination at the same lysine residue, acting as a protecting group. H2BK120Ub is a mark recognized by methyltransferase that plays an essential role in mixed-lineage leukemia (MLL)-rearranged leukemia, suggesting the potential of the catalyst system as an epigenetic tool and a cancer therapy. We also discuss the prospects of chemical catalyst-promoted synthetic epigenetics for future PTM studies and therapeutic uses.


Assuntos
4-Aminopiridina/análogos & derivados , DNA/química , Ésteres/química , Histonas/química , Peptídeos/química , Compostos de Sulfidrila/química , 4-Aminopiridina/química , Animais , Catálise , Epigênese Genética/genética , Histonas/genética , Histonas/metabolismo , Humanos , Processamento de Proteína Pós-Traducional
8.
Adv Exp Med Biol ; 1339: 415-422, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35023134

RESUMO

Many types of amyloidoses are pathologically characterized by the deposition of amyloid, which is comprised of fibrils formed by abnormally aggregated proteins, in various peripheral tissues and the central nervous system (CNS). Neurodegenerative disorders, such as Alzheimer disease (AD), Parkinson disease (PD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS), are well-known CNS amyloidoses that are characterized by amyloid deposition both inside and outside of cells. The amyloidogenic proteins of each disease have distinct primary sequences, and they normally function as soluble proteins. However, these proteins all aggregate and form amyloid with a common intermolecular tertiary structure, namely, a cross-ß-sheet structure, finally leading to the onset of each disease. Therefore, inhibition of the aggregation of amyloid proteins or efficient clearance of the already formed amyloids are thought to be promising therapeutic strategies against amyloidoses.


Assuntos
Doença de Alzheimer , Amiloidose , Demência Frontotemporal , Doença de Parkinson , Amiloide , Amiloidose/terapia , Humanos
9.
RSC Adv ; 10(28): 16727-16731, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35498849

RESUMO

We developed conjugates between monoclonal antibody (mAb) and folic acid (FA) by using a tryptophan (Trp)-selective reaction, which yields relatively homogenous products compared to conventional methods. The obtained mAb-FA conjugates showed significant cellular cytotoxicity toward folate receptor-expressing cancer cells, demonstrating that the conjugates retained the Fc region's original function.

10.
Chem Pharm Bull (Tokyo) ; 68(3): 212-215, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31189762

RESUMO

Anti-cancer chemotherapy with good efficacy and fewer side effects is highly desirable. A drug delivery system comprising a cancer-targeting module and a cytotoxic agent connected with a cleavable linker is promising for reducing side effects. The development of a cleavable linker satisfying the requirements of both stability and cleavability, however, is difficult, especially when a carbonate moiety is used for conjugating the linker to a hydroxy group in a drug of interest. We herein report a new stable linker comprising carbamate and ester spacers, which can be introduced on a hydroxy group of a drug. This linker is more stable in aqueous neutral buffer than a corresponding carbonate-type linker, and releases a payload anti-cancer drug, SN-38, through a two-step sequence upon cathepsin B treatment. This linker may have potential use in other drug delivery systems to lower side effects by selectively transporting cytotoxic drugs to tumor cells.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Oxigênio/química , Antineoplásicos/análise , Antineoplásicos/metabolismo , Carbamatos/química , Catepsina B/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Liberação Controlada de Fármacos , Ésteres/química , Humanos , Irinotecano/análise , Irinotecano/química , Irinotecano/metabolismo
11.
Proc Jpn Acad Ser B Phys Biol Sci ; 95(10): 602-611, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827018

RESUMO

In advanced cancer patients, malignant cells invade and disseminate within normal cells and develop resistance to therapy with additional genetic mutations, which makes radical cure very difficult. Precision medicine against advanced cancer is hampered by the lack of systems aimed at multiple target molecules within multiple loci. Here, we report the development of a versatile diagnostic and therapeutic system for advanced cancer, named the Cupid and Psyche system. Based on the strong non-covalent interaction of streptavidin and biotin, a low immunogenic mutated streptavidin, Cupid, and a modified artificial biotin, Psyche, have been designed. Cupid can be fused with various single-chain variable fragment antibodies and forms tetramer to recognize cancer cells precisely. Psyche can be conjugated to a wide range of diagnostic and therapeutic agents against malignant cells. The Cupid and Psyche system can be used in pre-targeting therapy as well as photo-immunotherapy effectively in animal models supporting the concept of a system for precision medicine for multiple targets within multiple loci.


Assuntos
Antineoplásicos/química , Biotina/química , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Estreptavidina/química , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Imunoterapia , Medicina de Precisão , Anticorpos de Cadeia Única/química
12.
Bioorg Med Chem ; 27(5): 888-893, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30733085

RESUMO

A characteristic feature of higher-order structures of amyloid ß peptide (Aß) aggregates observed in Alzheimer disease is the salt-bridge between the side-chains of Asp23 (carboxylate) and Lys28 (ammonium). We synthesized an [Met35(O)]Aß42 possessing a covalently bound lactam tether as an Asp23/Lys28 salt-bridge surrogate (compound 3). The lactam tether of 3 markedly promoted the formation of stable protofibril-like species that exhibited amyloidogenic properties such as a cross-ß-sheet structure and cytotoxicity. This finding is consistent with reports that the Asp23/Lys28 salt-bridge of Aß42 is transiently formed in aggregation intermediates.


Assuntos
Peptídeos beta-Amiloides/química , Lactamas/química , Oligopeptídeos/química , Fragmentos de Peptídeos/química , Peptídeos beta-Amiloides/toxicidade , Animais , Lactamas/toxicidade , Células PC12 , Fragmentos de Peptídeos/toxicidade , Conformação Proteica em Folha beta , Engenharia de Proteínas , Multimerização Proteica , Ratos
13.
Chem Commun (Camb) ; 54(86): 12222-12225, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30310900

RESUMO

A catalytic one-step synthesis of peptide thioacids was developed. The oxygen-sulfur atom exchange reaction converted the carboxy group at the C-terminus of the peptides into a thiocarboxy group with suppressed epimerization. This method was successfully applied to the synthesis of the peptide drug leuprorelin via an iterative fragment-coupling protocol.


Assuntos
Leuprolida/síntese química , Peptídeos/química , Compostos de Sulfidrila/química , Catálise , Leuprolida/química , Ácidos Sulfênicos/química
14.
Science ; 361(6403): 647-648, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30115796
15.
Biochem Biophys Res Commun ; 497(1): 298-304, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29432733

RESUMO

Rac1 is a member of the Rho family of small GTPases that regulates cytoskeletal reorganization, membrane polarization, cell migration and proliferation. Recently, a self-activating mutation of Rac1, Rac1P29S, has been identified as a recurrent somatic mutation frequently found in sun-exposed melanomas, which possesses increased inherent GDP/GTP exchange activity and cell transforming ability. However, the role of cellular Rac1-interacting proteins in the transforming potential of Rac1P29S remains unclear. We found that the catalytic domain of DOCK1, a Rac-specific guanine nucleotide exchange factor (GEF) implicated in malignancy of a variety of cancers, can greatly accelerate the GDP/GTP exchange of Rac1P29S. Enforced expression of Rac1P29S induced matrix invasion and macropinocytosis in wild-type (WT) mouse embryonic fibroblasts (MEFs), but not in DOCK1-deficient MEFs. Consistently, a selective inhibitor of DOCK1 that blocks its GEF function suppressed the invasion and macropinocytosis in WT MEFs expressing Rac1P29S. Human melanoma IGR-1 and breast cancer MDA-MB-157 cells harbor Rac1P29S mutation and express DOCK1 endogenously. Genetic inactivation and pharmacological inhibition of DOCK1 suppressed their invasion and macropinocytosis. Taken together, these results indicate that DOCK1 is a critical regulator of the malignant phenotypes induced by Rac1P29S, and suggest that targeting DOCK1 might be an effective approach to treat cancers associated with Rac1P29S mutation.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Pinocitose/genética , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/genética , Linhagem Celular Tumoral , Humanos , Mutação/genética , Invasividade Neoplásica
16.
J Am Chem Soc ; 139(22): 7568-7576, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28534629

RESUMO

Posttranslational modifications (PTMs) of histones play an important role in the complex regulatory mechanisms governing gene transcription, and their dysregulation can cause diseases such as cancer. The lack of methods for site-selectively modifying native chromatin, however, limits our understanding of the functional roles of a specific histone PTM, not as a single mark, but in the intertwined PTM network. Here, we report a synthetic catalyst DMAP-SH (DSH), which activates chemically stable thioesters (including acetyl-CoA) under physiological conditions and transfers various acyl groups to the proximate amino groups. Our data suggest that DSH, conjugated with a nucleosome ligand, such as pyrrole-imidazole-polyamide and LANA (latency-associated nuclear antigen)-peptide, promotes both natural (including acetylation, butyrylation, malonylation, and ubiquitination) and non-natural (azido- and phosphoryl labeling) PTMs on histones in recombinant nucleosomes and/or in native chromatin, at lysine residues close to the DSH moiety. To investigate the validity of our method, we used LANA-DSH to promote histone H2B lysine-120 (K120) acylation, the function of which is largely unknown. H2BK120 acetylation and malonylation modulated higher-order chromatin structures by reducing internucleosomal interactions, and this modulation was further enhanced by histone tail acetylation. This approach, therefore, may have versatile applications for dissecting the regulatory mechanisms underlying chromatin function.


Assuntos
Cromatina/química , Histonas/química , Processamento de Proteína Pós-Traducional , Acetilação , Catálise , Modelos Moleculares , Estereoisomerismo
17.
Cell Rep ; 19(5): 969-980, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28467910

RESUMO

Oncogenic Ras plays a key role in cancer initiation but also contributes to malignant phenotypes by stimulating nutrient uptake and promoting invasive migration. Because these latter cellular responses require Rac-mediated remodeling of the actin cytoskeleton, we hypothesized that molecules involved in Rac activation may be valuable targets for cancer therapy. We report that genetic inactivation of the Rac-specific guanine nucleotide exchange factor DOCK1 ablates both macropinocytosis-dependent nutrient uptake and cellular invasion in Ras-transformed cells. By screening chemical libraries, we have identified 1-(2-(3'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)-2-oxoethyl)-5-pyrrolidinylsulfonyl-2(1H)-pyridone (TBOPP) as a selective inhibitor of DOCK1. TBOPP dampened DOCK1-mediated invasion, macropinocytosis, and survival under the condition of glutamine deprivation without impairing the biological functions of the closely related DOCK2 and DOCK5 proteins. Furthermore, TBOPP treatment suppressed cancer metastasis and growth in vivo in mice. Our results demonstrate that selective pharmacological inhibition of DOCK1 could be a therapeutic approach to target cancer cell survival and invasion.


Assuntos
Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Piridonas/farmacologia , Proteínas rac de Ligação ao GTP/efeitos adversos , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/tratamento farmacológico , Pinocitose/efeitos dos fármacos , Piridonas/uso terapêutico , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo
18.
Org Lett ; 19(9): 2398-2401, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28440651

RESUMO

Iron-catalyzed acyloxyalkylation of styrene derivatives using hypervalent iodine reagents was achieved. The acyloxyalkylation reaction proceeded using various types of styrenes and hypervalent iodine reagents. The acyloxyalkylated products were obtained in moderate to good yields without loss of the functional groups. The reaction proceeded via the formation of radical species derived from hypervalent iodine reagents by decarboxylation.

19.
Chem Commun (Camb) ; 53(23): 3311-3314, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28144647

RESUMO

The site-selective cleavage of peptide bonds is an important chemical modification that is useful not only for the structural determination of peptides, but also as an artificial modulator of peptide/protein function and properties. Here we report site-selective hydrolysis of peptide bonds at the Ser and Thr positions with a high conversion yield. This chemical cleavage relies on Sc(iii)-promoted N,O-acyl rearrangement and subsequent hydrolysis. The method is applicable to a broad scope of polypeptides with various functional groups, including a post-translationally modified peptide that is unsuitable for enzymatic hydrolysis. The system was further extended to site-selective cleavage of a native protein, Aß1-42, which is closely related to the onset of Alzheimer's disease.

20.
J Am Chem Soc ; 139(6): 2204-2207, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28139917

RESUMO

Hybrid catalyst systems to achieve acceptorless dehydrogenation of N-heterocycles and tetrahydronaphthalenes-model substrates for liquid organic hydrogen carriers-were developed. A binary hybrid catalysis comprising an acridinium photoredox catalyst and a Pd metal catalyst was effective for the dehydrogenation of N-heterocycles, whereas a ternary hybrid catalysis comprising an acridinium photoredox catalyst, a Pd metal catalyst, and a thiophosphoric imide organocatalyst achieved dehydrogenation of tetrahydronaphthalenes. These hybrid catalyst systems allowed for 2 molar equiv of H2 gas release from six-membered N-heterocycles and tetrahydronaphthalenes under mild conditions, i.e., visible light irradiation at rt. The combined use of two or three different catalyst types was essential for the catalytic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA