Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Pharm Bull (Tokyo) ; 72(4): 389-392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644164

RESUMO

Chagas disease, a neglected tropical disease caused by the protozoan Trypanosoma cruzi poses a significant health challenge in rural areas of Latin America. The current pharmacological options exhibit notable side effects, demand prolonged administration, and display limited efficacy. Consequently, there is an urgent need to develop drugs that are safe and clinically effective. Previously, we identified a quinone compound (designated as compound 2) with potent antiprotozoal activity, based on the chemical structure of komaroviquinone, a natural product renowned for its antitrypanosomal effects. However, compound 2 was demonstrated considerably unstable to light. In this study, we elucidated the structure of the light-induced degradation products of compound 2 and probed the correlation between the quinone ring's substituents and its susceptibility to light. Our findings led to the discovery of quinones with significantly enhanced light stability, some of which exhibiting antitrypanosomal activity. The most promising compound was evaluated for drug efficacy in a mouse model of Chagas disease, revealing where a notable reduction in blood parasitemia.


Assuntos
Doença de Chagas , Quinonas , Tripanossomicidas , Trypanosoma cruzi , Doença de Chagas/tratamento farmacológico , Animais , Trypanosoma cruzi/efeitos dos fármacos , Camundongos , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Quinonas/química , Quinonas/farmacologia , Testes de Sensibilidade Parasitária , Estrutura Molecular , Luz , Modelos Animais de Doenças , Relação Estrutura-Atividade
2.
Sci Rep ; 14(1): 7628, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561454

RESUMO

Colorectal cancer is the third most commonly diagnosed cancer and the second leading cause of cancer-related death, thus a novel chemotherapeutic agent for colon cancer therapy is needed. In this study, analogues of echinomycin, a cyclic peptide natural product with potent toxicity to several human cancer cell lines, were synthesized, and their biological activities against human colon cancer cells were investigated. Analogue 3 as well as 1 inhibit HIF-1α-mediated transcription. Notably, transcriptome analysis indicated that the cell cycle and its regulation were involved in the effects on cells treated with 3. Analogue 3 exhibited superior in vivo efficacy to echinomycin without significant toxicity in mouse xenograft model. The low dose of 3 needed to be efficacious in vivo is also noteworthy and our data suggest that 3 is an attractive and potentially novel agent for the treatment of colon cancer.


Assuntos
Neoplasias do Colo , Equinomicina , Humanos , Animais , Camundongos , Equinomicina/farmacologia , Neoplasias do Colo/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia
3.
J Med Chem ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670538

RESUMO

Transthyretin amyloidosis is a fatal disorder caused by transthyretin amyloid aggregation. Stabilizing the native structure of transthyretin is an effective approach to inhibit amyloid aggregation. To develop kinetic stabilizers of transthyretin, it is crucial to explore compounds that selectively bind to transthyretin in plasma. Our recent findings demonstrated that the uricosuric agent benziodarone selectively binds to transthyretin in plasma. Here, we report the development of benziodarone analogues with enhanced potency for selective binding to transthyretin in plasma compared to benziodarone. These analogues featured substituents of chlorine, bromine, iodine, a methyl group, or a trifluoromethyl group, at the 4-position of the benzofuran ring. X-ray crystal structure analysis revealed that CH···O hydrogen bonds and a halogen bond are important for the binding of the compounds to the thyroxine-binding sites. The bioavailability of benziodarone analogues with 4-Br, 4-Cl, or 4-CH3 was comparable to that of tafamidis, a current therapeutic agent for transthyretin amyloidosis.

4.
Bioorg Chem ; 145: 107220, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387401

RESUMO

In this study, we explored the potential of the photoremovable o-nitrobenzyl (oNB) group as a tool to manipulate the membrane permeability and regulate the conformation of linear peptides by means of experimental and computational studies. We found that the introduction of one or more oNB groups markedly increased the permeability and altered the conformation, as compared to the corresponding unmodified peptides. We thoroughly investigated the impact of peptide length, number of oNB group, oNB insertion position, and introduction of N- and C-terminal protecting groups on the passive membrane permeability by means of parallel artificial membrane permeability assay (PAMPA). Photoreaction of peptides containing one or two oNB groups proceeded cleanly in moderate to high yields, releasing the unprotected parent linear peptide. The oNB-modified peptides showed a cis/trans conformational equilibrium, while after photolysis, the unprotected linear peptides showed only the trans-amide conformation. Furthermore, a comprehensive comparison of oNB-modified peptides and N-methylated peptides was conducted, encompassing conformational analysis and physicochemical properties. N-Substituted peptides favored a folded-like structure, which may contribute to the improvement in permeability.


Assuntos
Membranas Artificiais , Peptídeos , Peptídeos/química , Permeabilidade da Membrana Celular , Conformação Molecular , Permeabilidade
5.
Nat Commun ; 14(1): 1416, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932083

RESUMO

Naturally occurring peptides with high membrane permeability often have ester bonds on their backbones. However, the impact of amide-to-ester substitutions on the membrane permeability of peptides has not been directly evaluated. Here we report the effect of amide-to-ester substitutions on the membrane permeability and conformational ensemble of cyclic peptides related to membrane permeation. Amide-to-ester substitutions are shown to improve the membrane permeability of dipeptides and a model cyclic hexapeptide. NMR-based conformational analysis and enhanced sampling molecular dynamics simulations suggest that the conformational transition of the cyclic hexapeptide upon membrane permeation is differently influenced by an amide-to-ester substitution and an amide N-methylation. The effect of amide-to-ester substitution on membrane permeability of other cyclic hexapeptides, cyclic octapeptides, and a cyclic nonapeptide is also investigated to examine the scope of the substitution. Appropriate utilization of amide-to-ester substitution based on our results will facilitate the development of membrane-permeable peptides.


Assuntos
Amidas , Peptídeos Cíclicos , Peptídeos Cíclicos/química , Metilação , Ésteres , Permeabilidade da Membrana Celular , Peptídeos/química , Permeabilidade
6.
J Med Chem ; 65(24): 16218-16233, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36472374

RESUMO

Misfolding and aggregation of transthyretin are implicated in the fatal systemic disease known as transthyretin amyloidosis. Here, we report the development of a naringenin derivative bearing two chlorine atoms that will be efficacious for preventing aggregation of transthyretin in the eye. The amyloid inhibitory activity of the naringenin derivative was as strong as that of tafamidis, which is the first therapeutic agent targeting transthyretin in the plasma. X-ray crystal structures of the compounds in complex with transthyretin demonstrated that the naringenin derivative with one chlorine bound to the thyroxine-binding site of transthyretin in the forward mode and that the derivative with two chlorines bound to it in the reverse mode. An ex vivo competitive binding assay showed that naringenin derivatives exhibited more potent binding than tafamidis in the plasma. Furthermore, an in vivo pharmacokinetic study demonstrated that the dichlorinated derivative was significantly delivered to the eye.


Assuntos
Neuropatias Amiloides Familiares , Pré-Albumina , Humanos , Pré-Albumina/metabolismo , Cloro , Neuropatias Amiloides Familiares/tratamento farmacológico , Amiloide/metabolismo
7.
Bioorg Med Chem ; 44: 116292, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34225167

RESUMO

Transthyretin is a tetrameric protein which functions as a transporter of thyroxine and retinol-binding protein. Misfolding and amyloid aggregation of transthyretin are known to cause wild-type and hereditary transthyretin amyloidosis. Stabilization of the transthyretin tetramer by low molecular weight compounds is an efficacious strategy to inhibit the aggregation pathway in the amyloidosis. Here, we investigated the inhibitory activities of anthraquinone and xanthone derivatives against amyloid aggregation, and found that xanthone-2-carboxylic acid with one chlorine or methyl group has strong inhibitory activity comparable with that of diflunisal, which is one of the best known stabilizers of transthyretin. X-ray crystallographic structures of transthyretin in complex with the compounds revealed that the introduction of chlorine, which is buried in a hydrophobic region, is important for the strong inhibitory effect of the stabilizer against amyloidogenesis. An in vitro absorption, distribution, metabolism and elimination (ADME) study and in vivo pharmacokinetic study demonstrated that the compounds have drug-like features, suggesting that they have potential as therapeutic agents to stabilize transthyretin.


Assuntos
Neuropatias Amiloides Familiares/tratamento farmacológico , Antraquinonas/uso terapêutico , Xantonas/uso terapêutico , Antraquinonas/síntese química , Antraquinonas/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Xantonas/síntese química , Xantonas/química
8.
J Pharm Sci ; 106(9): 2566-2575, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28456721

RESUMO

The importance of multidrug resistance-associated protein 4 (Mrp4/Abcc4) in limiting the penetration of Mrp4 substrate compounds into the central nervous system across the blood-brain barrier was investigated using Mrp4-/- mice. Significant adenosine triphosphate-dependent uptake by MRP4 was observed for ochratoxin A, pitavastatin, raltitrexed (Km = 43.7 µM), pravastatin, cyclic guanosine monophosphate, 2,4-dichlorophenoxyacetate, and urate. The defect in the Mrp4 gene did not affect the brain-to-plasma ratio (Kp,brain) of quinidine and dantrolene. Following intravenous infusion in wild-type and Mrp4-/- mice, the plasma concentrations of the tested compounds (cefazolin, cefmetazole, ciprofloxacin, cyclophosphamide, furosemide, hydrochlorothiazide, methotrexate, pitavastatin, pravastatin, and raltitrexed) were identical; however, Mrp4-/- mice showed a significantly higher (1.9- to 2.5-fold) Kp,brain than wild-type mice for methotrexate, raltitrexed, and cyclophosphamide. GF120918, a dual inhibitor of P-gp and Bcrp, significantly decreased Kp,cortex and Kp,cerebellum only in Mrp4-/- mice. Methotrexate and raltitrexed are also substrates of multispecific organic anion transporters such as Oatp1a4 and Oat3. GF120918 showed an inhibition potency against Oatp1a4, but not against Oat3. These results suggest that Mrp4 limits the penetration of methotrexate and raltitrexed into the brain across the blood-brain barrier, which is likely to be facilitated by some uptake transporters.


Assuntos
Barreira Hematoencefálica/metabolismo , Sistema Nervoso Central/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Ácido 2,4-Diclorofenoxiacético/química , Ácido 2,4-Diclorofenoxiacético/metabolismo , Acridinas/química , Acridinas/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico , Encéfalo/metabolismo , GMP Cíclico/química , GMP Cíclico/metabolismo , Humanos , Cinética , Masculino , Metotrexato/química , Metotrexato/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Ocratoxinas/química , Ocratoxinas/metabolismo , Pravastatina/química , Pravastatina/metabolismo , Quinazolinas/química , Quinazolinas/metabolismo , Quinolinas/química , Quinolinas/metabolismo , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/metabolismo , Tiofenos/química , Tiofenos/metabolismo , Ácido Úrico/química , Ácido Úrico/metabolismo
9.
J Pharm Sci ; 98(5): 1775-87, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18781650

RESUMO

The purpose of the present study was to examine whether the intestinal absorption of low-permeability drugs could be improved by utilization of the intestinal influx transporter PEPT1. We investigated whether peptide derivatives of poorly absorbable nonamino acid-like drugs might be substrates of PEPT1, using rebamipide (Reb) as a model drug. We synthesized several peptide derivatives of rebamipide and examined their inhibitory effect on the uptake of [(3)H]Gly-Sar by PEPT1-expressing HeLa cells. Some of the peptide derivatives inhibited PEPT1-mediated uptake of [(3)H]Gly-Sar. Next, uptake of the inhibitory peptide derivatives was evaluated in PEPT1-expressing Xenopus oocytes and HeLa cells. Ser(Reb)-Gly exhibited significantly increased uptake by PEPT1-expressing cells in comparison with that by mock cells. The permeability of Ser(Reb)-Gly across a Caco-2 cell monolayer was significantly higher than that of rebamipide itself, and the transport was decreased in the presence of PEPT1 substrates. Further, a rat intestinal perfusion study revealed increased absorption of Ser(Reb)-Gly compared with rebamipide. These results demonstrate that the addition of a dipeptide moiety to a poorly absorbable nonpeptide/nonamino acid-like drug can result in absorption via the intestinal transporter PEPT1, though there is some selectivity as regards the structure of the added peptide moiety.


Assuntos
Alanina/análogos & derivados , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacocinética , Absorção Intestinal/fisiologia , Peptídeos/química , Quinolonas/administração & dosagem , Quinolonas/farmacocinética , Simportadores/metabolismo , Alanina/administração & dosagem , Alanina/farmacocinética , Animais , Disponibilidade Biológica , Células CACO-2 , Cromatografia Líquida de Alta Pressão , Dipeptídeos/química , Glutamina/química , Células HeLa , Humanos , Técnicas In Vitro , Indicadores e Reagentes , Mucosa Intestinal/metabolismo , Intestinos/irrigação sanguínea , Oócitos/metabolismo , Técnicas de Patch-Clamp , Transportador 1 de Peptídeos , Peptídeos/síntese química , Ratos , Fluxo Sanguíneo Regional , Dodecilsulfato de Sódio , Taurina , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA