Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 7046, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857782

RESUMO

Reconstruction of heterogeneity through single cell transcriptional profiling has greatly advanced our understanding of the spatial liver transcriptome in recent years. However, global transcriptional differences across lobular units remain elusive in physical space. Here, we apply Spatial Transcriptomics to perform transcriptomic analysis across sectioned liver tissue. We confirm that the heterogeneity in this complex tissue is predominantly determined by lobular zonation. By introducing novel computational approaches, we enable transcriptional gradient measurements between tissue structures, including several lobules in a variety of orientations. Further, our data suggests the presence of previously transcriptionally uncharacterized structures within liver tissue, contributing to the overall spatial heterogeneity of the organ. This study demonstrates how comprehensive spatial transcriptomic technologies can be used to delineate extensive spatial gene expression patterns in the liver, indicating its future impact for studies of liver function, development and regeneration as well as its potential in pre-clinical and clinical pathology.


Assuntos
Heterogeneidade Genética , Fígado/metabolismo , Transcriptoma , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Eritroblastos/citologia , Eritroblastos/metabolismo , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Hepatócitos/citologia , Hepatócitos/metabolismo , Células de Kupffer/citologia , Células de Kupffer/metabolismo , Fígado/citologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Anotação de Sequência Molecular , Neutrófilos/citologia , Neutrófilos/metabolismo
2.
Elife ; 92020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33179597

RESUMO

Gamma-aminobutyric acid (GABA) serves diverse biological functions in prokaryotes and eukaryotes, including neurotransmission in vertebrates. Yet, the role of GABA in the immune system has remained elusive. Here, a comprehensive characterization of human and murine myeloid mononuclear phagocytes revealed the presence of a conserved and tightly regulated GABAergic machinery with expression of GABA metabolic enzymes and transporters, GABA-A receptors and regulators, and voltage-dependent calcium channels. Infection challenge with the common coccidian parasites Toxoplasma gondii and Neospora caninum activated GABAergic signaling in phagocytes. Using gene silencing and pharmacological modulators in vitro and in vivo in mice, we identify the functional determinants of GABAergic signaling in parasitized phagocytes and demonstrate a link to calcium responses and migratory activation. The findings reveal a regulatory role for a GABAergic signaling machinery in the host-pathogen interplay between phagocytes and invasive coccidian parasites. The co-option of GABA underlies colonization of the host by a Trojan horse mechanism.


Assuntos
Fagócitos/metabolismo , Toxoplasma/fisiologia , Toxoplasmose Animal/parasitologia , Ácido gama-Aminobutírico/metabolismo , Transferência Adotiva , Animais , Movimento Celular , Células Cultivadas , Células Dendríticas/fisiologia , Feminino , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR
3.
Infect Immun ; 85(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28760930

RESUMO

The obligate intracellular parasite Toxoplasma gondii can actively infect any nucleated cell type, including cells from the immune system. The rapid transfer of T. gondii from infected dendritic cells to effector natural killer (NK) cells may contribute to the parasite's sequestration and shielding from immune recognition shortly after infection. However, subversion of NK cell functions, such as cytotoxicity or production of proinflammatory cytokines, such as gamma interferon (IFN-γ), upon parasite infection might also be beneficial to the parasite. In the present study, we investigated the effects of T. gondii infection on NK cells. In vitro, infected NK cells were found to be poor at killing target cells and had reduced levels of IFN-γ production. This could be attributed in part to the inability of infected cells to form conjugates with their target cells. However, even upon NK1.1 cross-linking of NK cells, the infected NK cells also exhibited poor degranulation and IFN-γ production. Similarly, NK cells infected in vivo were also poor at killing target cells and producing IFN-γ. Increased levels of transforming growth factor ß production, as well as increased levels of expression of SHP-1 in the cytosol of infected NK cells upon infection, were observed in infected NK cells. However, the phosphorylation of STAT4 was not altered in infected NK cells, suggesting that transcriptional regulation mediates the reduced IFN-γ production, which was confirmed by quantitative PCR. These data suggest that infection of NK cells by T. gondii impairs NK cell recognition of target cells and cytokine release, two mechanisms that independently could enhance T. gondii survival.


Assuntos
Imunomodulação , Células Matadoras Naturais/microbiologia , Células Matadoras Naturais/fisiologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Animais , Citotoxicidade Imunológica , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Interações Hospedeiro-Parasita , Interferon gama/biossíntese , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Camundongos , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 6/biossíntese , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Fator de Transcrição STAT4/metabolismo , Toxoplasma/fisiologia , Fator de Crescimento Transformador beta/biossíntese
4.
Nat Immunol ; 17(11): 1282-1290, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27618552

RESUMO

Glioma cells recruit and exploit microglia (the resident immune cells of the brain) for their proliferation and invasion ability. The underlying molecular mechanism used by glioma cells to transform microglia into a tumor-supporting phenotype has remained elusive. We found that glioma-induced microglia conversion was coupled to a reduction in the basal activity of microglial caspase-3 and increased S-nitrosylation of mitochondria-associated caspase-3 through inhibition of thioredoxin-2 activity, and that inhibition of caspase-3 regulated microglial tumor-supporting function. Furthermore, we identified the activity of nitric oxide synthase 2 (NOS2, also known as iNOS) originating from the glioma cells as a driving stimulus in the control of microglial caspase-3 activity. Repression of glioma NOS2 expression in vivo led to a reduction in both microglia recruitment and tumor expansion, whereas depletion of microglial caspase-3 gene promoted tumor growth. Our results provide evidence that inhibition of the denitrosylation of S-nitrosylated procaspase-3 mediated by the redox protein Trx2 is a part of the microglial pro-tumoral activation pathway initiated by glioma cancer cells.


Assuntos
Caspase 3/metabolismo , Glioma/metabolismo , Glioma/patologia , Microglia/metabolismo , Fenótipo , Animais , Linhagem Celular Tumoral , Movimento Celular , Modelos Animais de Doenças , Ativação Enzimática , Técnicas de Silenciamento de Genes , Glioma/imunologia , Xenoenxertos , Humanos , Masculino , Camundongos , Microglia/imunologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Tiorredoxinas/metabolismo , Carga Tumoral
5.
Cell Microbiol ; 18(11): 1537-1550, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27018989

RESUMO

The obligate intracellular parasite Toxoplasma gondii exploits cells of the immune system to disseminate. Upon infection, parasitized dendritic cells (DCs) and microglia exhibit a hypermigratory phenotype in vitro that has been associated with enhancing parasite dissemination in vivo in mice. One unresolved question is how parasites commandeer parasitized cells to achieve systemic dissemination by a 'Trojan-horse' mechanism. By chromatography and mass spectrometry analyses, we identified an orthologue of the 14-3-3 protein family, T. gondii 14-3-3 (Tg14-3-3), as mediator of DC hypermotility. We demonstrate that parasite-derived polypeptide fractions enriched for Tg14-3-3 or recombinant Tg14-3-3 are sufficient to induce the hypermotile phenotype when introduced by protein transfection into murine DCs, human DCs or microglia. Further, gene transfer of Tg14-3-3 by lentiviral transduction induced hypermotility in primary human DCs. In parasites expressing Tg14-3-3 in a ligand-regulatable fashion, overexpression of Tg14-3-3 was correlated with induction of hypermotility in parasitized DCs. Localization studies in infected DCs identified Tg14-3-3 within the parasitophorous vacuolar space and a rapid recruitment of host cell 14-3-3 to the parasitophorous vacuole membrane. The present work identifies a determinant role for Tg14-3-3 in the induction of the migratory activation of immune cells by T. gondii. Collectively, the findings reveal Tg14-3-3 as a novel target for an intracellular pathogen that acts by hijacking the host cell's migratory properties to disseminate.


Assuntos
Proteínas 14-3-3/fisiologia , Células Dendríticas/fisiologia , Proteínas de Protozoários/fisiologia , Toxoplasma/fisiologia , Animais , Movimento Celular , Células Cultivadas , Células Dendríticas/parasitologia , Interações Hospedeiro-Parasita , Humanos , Camundongos Endogâmicos C57BL , Vacúolos/metabolismo , Vacúolos/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA