Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Stem Cell Reports ; 19(4): 443-455, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38458191

RESUMO

Spermatogonial stem cell (SSC) transplantation is a valuable tool for studying stem cell-niche interaction. However, the conventional approach requires the removal of endogenous SSCs, causing damage to the niche. Here we introduce WIN18,446, an ALDH1A2 inhibitor, to enhance SSC colonization in nonablated recipients. Pre-transplantation treatment with WIN18,446 induced abnormal claudin protein expression, which comprises the blood-testis barrier and impedes SSC colonization. Consequently, WIN18,446 increased colonization efficiency by 4.6-fold compared with untreated host. WIN18,446-treated testes remained small despite the cessation of WIN18,446, suggesting its irreversible effect. Offspring were born by microinsemination using donor-derived sperm. While WIN18,446 was lethal to busulfan-treated mice, cyclophosphamide- or radiation-treated animals survived after WIN18,446 treatment. Although WIN18,446 is not applicable to humans due to toxicity, similar ALDH1A2 inhibitors may be useful for SSC transplantation into nonablated testes, shedding light on the role of retinoid metabolism on SSC-niche interactions and advancing SSC research in animal models and humans.


Assuntos
Sêmen , Espermatogônias , Humanos , Camundongos , Masculino , Animais , Espermatogônias/metabolismo , Testículo/metabolismo , Fertilidade , Transplante de Células-Tronco , Espermatogênese
2.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966118

RESUMO

In vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) are 2 major assisted reproductive techniques (ARTs) used widely to treat infertility. Recently, spermatogonial transplantation emerged as a new ART to restore fertility to young patients with cancer after cancer therapy. To examine the influence of germ cell manipulation on behavior of offspring, we produced F1 offspring by a combination of two ARTs, spermatogonial transplantation and ICSI. When these animals were compared with F1 offspring produced by ICSI using fresh wild-type sperm, not only spermatogonial transplantation-ICSI mice but also ICSI-only control mice exhibited behavioral abnormalities, which persisted in the F2 generation. Furthermore, although these F1 offspring appeared normal, F2 offspring produced by IVF using F1 sperm and wild-type oocytes showed various types of congenital abnormalities, including anophthalmia, hydrocephalus, and missing limbs. Therefore, ARTs can induce morphological and functional defects in mice, some of which become evident only after germline transmission.


Assuntos
Infertilidade , Neoplasias , Humanos , Masculino , Animais , Camundongos , Injeções de Esperma Intracitoplásmicas/efeitos adversos , Injeções de Esperma Intracitoplásmicas/métodos , Sêmen , Fertilização in vitro/métodos , Neoplasias/etiologia
3.
J Reprod Dev ; 69(6): 347-355, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37899250

RESUMO

Spermatogonial stem cells (SSCs) possess a unique ability to recolonize the seminiferous tubules. Upon microinjection into the adluminal compartment of the seminiferous tubules, SSCs transmigrate through the blood-testis barrier (BTB) to the basal compartment of the tubule and reinitiate spermatogenesis. It was recently discovered that inhibiting retinoic acid signaling with WIN18,446 enhances SSC colonization by transiently suppressing spermatogonia differentiation, thereby promoting fertility restoration. In this study, we report that WIN18,446 increases SSC colonization by disrupting the BTB. WIN18,446 altered the expression patterns of tight junction proteins (TJPs) and disrupted the BTB in busulfan-treated mice. WIN18,446 upregulated the expression of FGF2, one of the self-renewal factors for SSCs. While WIN18,446 enhanced SSC colonization in busulfan-treated wild-type mice, it did not increase colonization levels in busulfan-treated Cldn11-deficient mice, which lack the BTB, indicating that the enhancement of SSC colonization in wild-type testes depended on the loss of the BTB. Serial transplantation analysis revealed impaired self-renewal caused by WIN18,446, indicating that WIN18,446-mediated inhibition of retinoic acid signaling impaired SSC self-renewal. Strikingly, WIN18,446 administration resulted in the death of 45% of busulfan-treated recipient mice. These findings suggest that TJP modulation is the primary mechanism behind enhanced SSC homing by WIN18,446 and raise concerns regarding the use of WIN18,446 for human SSC transplantation.


Assuntos
Barreira Hematotesticular , Bussulfano , Masculino , Animais , Camundongos , Humanos , Barreira Hematotesticular/metabolismo , Bussulfano/farmacologia , Bussulfano/metabolismo , Espermatogônias/metabolismo , Testículo , Espermatogênese , Fertilidade , Transplante de Células , Células-Tronco , Tretinoína/farmacologia , Transplante de Células-Tronco
4.
Stem Cell Reports ; 18(4): 985-998, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36963391

RESUMO

The testis is an immune-privileged organ. It is considered that the testis somatic microenvironment is responsible for immune suppression. However, immunological properties of spermatogonial stem cells (SSCs) have remained unknown. Here, we report the birth of allogeneic offspring by enhanced expression of immunosuppressive PD-L1 in SSCs. In vitro supplementation of GDNF and FGF2 increased expression of PD-L1 in SSCs. Cultured SSCs maintained allogeneic spermatogenesis that persisted for >1 year. However, depletion or gene editing of Pd-l1 family genes in SSCs prevented allogeneic spermatogenesis, which suggested that germ cells are responsible for suppression of the allogeneic response. PD-L1 was induced by activation of the MAPK14-BCL6B pathway, which drives self-renewal by reactive oxygen species (ROS) generation. By contrast, reduced ROS or Mapk14 deficiency downregulated PD-L1. Allogeneic offspring were born after SSC transplantation into congenitally infertile and chemically castrated mice. Thus, SSCs have unique immunological properties, which make allogeneic recipients into "surrogate fathers."


Assuntos
Transplante de Células-Tronco Hematopoéticas , Proteína Quinase 14 Ativada por Mitógeno , Masculino , Camundongos , Animais , Espermatogônias , Espécies Reativas de Oxigênio/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proliferação de Células , Testículo , Espermatogênese/genética
5.
Biol Reprod ; 108(4): 682-693, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36648447

RESUMO

Characterization of spermatogonial stem cells (SSCs) has been hampered by their low frequency and lack of features that distinguish them from committed spermatogonia. Few conserved SSC markers have been discovered. To identify a new SSC marker, we evaluated SIRPA expression in mouse and rat SSCs. SIRPA was expressed in a small population of undifferentiated spermatogonia. SIRPA, and its ligand CD47 were expressed in cultured SSCs. Expression of both SIRPA and CD47 was upregulated by supplementation of GDNF and FGF2, which promoted SSC self-renewal. Sirpa depletion by short hairpin RNA impaired the proliferation of cultured SSCs, and these cells showed decreased MAP2K1 activation and PTPN11 phosphorylation. Immunoprecipitation experiments showed that SIRPA associates with PTPN11. Ptpn11 depletion impaired SSC activity in a manner similar to Sirpa depletion. SIRPA was expressed in undifferentiated spermatogonia in rat and monkey testes. Xenogenic transplantation experiments demonstrated that SIRPA is expressed in rat SSCs. These results suggest that SIRPA is a conserved SSC marker that promotes SSC self-renewal division by activating the MAP2K1 pathway via PTPN11.


Assuntos
Antígeno CD47 , Células-Tronco , Masculino , Camundongos , Ratos , Animais , Antígeno CD47/metabolismo , Células-Tronco/metabolismo , Proliferação de Células , Espermatogônias/metabolismo , Testículo/metabolismo , Células Cultivadas
6.
J Reprod Dev ; 68(6): 369-376, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36223953

RESUMO

Oogenesis depends on close interactions between oocytes and granulosa cells. Abnormal signaling between these cell types can result in infertility. However, attempts to manipulate oocyte-granulosa cell interactions have had limited success, likely due to the blood-follicle barrier (BFB), which prevents the penetration of exogenous materials into ovarian follicles. Here, we used adenoviruses (AVs) to manipulate the oocyte-granulosa cell interactions. AVs penetrated the BFB and transduced granulosa cells through ovarian microinjection. Although AVs caused transient inflammation, they did not impair fertility in wild-type mice. Introduction of Kitl-expressing AVs into congenitally infertile KitlSl-t/KitlSl-t mutant mouse ovaries, which contained only primordial follicles because of a lack of Kitl expression, restored fertility through natural mating. The offspring showed no evidence of AV integration and exhibited normal genomic imprinting patterns for imprinted genes. These results demonstrate the usefulness of AVs for manipulating oogenesis and suggest the possibility of gene therapies for human female infertility.


Assuntos
Infertilidade Feminina , Camundongos , Feminino , Animais , Humanos , Infertilidade Feminina/genética , Infertilidade Feminina/terapia , Infertilidade Feminina/metabolismo , Adenoviridae/genética , Folículo Ovariano/metabolismo , Células da Granulosa/metabolismo , Oócitos/metabolismo , Fertilidade/genética
7.
Stem Cell Reports ; 17(9): 1924-1941, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35931081

RESUMO

A small number of offspring are born from the numerous sperm generated from spermatogonial stem cells (SSCs). However, little is known regarding the rules and molecular mechanisms that govern germline transmission patterns. Here we report that the Trp53 tumor suppressor gene limits germline genetic diversity via Cdkn1a. Trp53-deficient SSCs outcompeted wild-type (WT) SSCs and produced significantly more progeny after co-transplantation into infertile mice. Lentivirus-mediated transgenerational lineage analysis showed that offspring bearing the same virus integration were repeatedly born in a non-random pattern from WT SSCs. However, SSCs lacking Trp53 or Cdkn1a sired transgenic offspring in random patterns with increased genetic diversity. Apoptosis of KIT+ differentiating germ cells was reduced in Trp53- or Cdkn1a-deficient mice. Reduced CDKN1A expression in Trp53-deficient spermatogonia suggested that Cdkn1a limits genetic diversity by supporting apoptosis of syncytial spermatogonial clones. Therefore, the TRP53-CDKN1A pathway regulates tumorigenesis and the germline transmission pattern.


Assuntos
Células-Tronco Germinativas Adultas , Sêmen , Animais , Apoptose/genética , Masculino , Camundongos , Espermatogênese/genética , Espermatogônias/metabolismo , Espermatozoides
8.
Cell Rep Med ; 3(5): 100606, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35584625

RESUMO

Oocytes and granulosa cells closely interact with each other during follicular development, and a lack of appropriate signaling between them results in infertility. Attempts to manipulate oocyte microenvironment have been impeded by the impermeability of the blood-follicle barrier (BFB). To establish a strategy for manipulating oogenesis, we use adeno-associated viruses (AAVs), which have a unique ability of transcytosis. Microinjecting of AAVs into the ovarian stroma penetrates the BFB and achieves long-term gene expression. Introduction of an AAV carrying the mouse Kitl gene restores oogenesis in congenitally infertile KitlSl-t/KitlSl-t mutant mouse ovaries, which lack Kitl expression but contain only primordial follicles. Healthy offspring without AAV integration are born by natural mating. Therefore, AAV-mediated gene delivery not only provides a means for studying oocyte-granulosa interactions through the manipulation of the oocyte microenvironment but could also be a powerful method to treat female infertility resulting from somatic cell defects.


Assuntos
Infertilidade Feminina , Ovário , Animais , Dependovirus/genética , Feminino , Fertilidade/genética , Humanos , Infertilidade Feminina/genética , Camundongos , Folículo Ovariano
9.
Stem Cell Reports ; 17(4): 924-935, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35334214

RESUMO

Gametogenesis requires close interactions between germ cells and somatic cells. Derivation of sperm from spermatogonial stem cells (SSCs) is hampered by the inefficiency of spermatogonial transplantation technique in many animal species because it requires a large number of SSCs and depletion of endogenous spermatogenesis. Here we used mouse testis primordia and organoids to induce spermatogenesis from SSCs. We microinjected mouse SSCs into embryonic gonads or reaggregated neonatal testis organoids, which were transplanted under the tunica albuginea of mature testes. As few as 1 × 104 donor cells colonized both types of transplants and produced sperm. Moreover, rat embryonic gonads supported xenogeneic spermatogenesis from mouse SSCs when transplanted in testes of immunodeficient mice. Offspring with normal genomic imprinting patterns were born after microinsemination. These results demonstrate remarkable flexibility of the germ cell-somatic cell interaction and raise new strategies of SSC manipulation for animal transgenesis and analysis of male infertility.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Testículo , Animais , Masculino , Camundongos , Organoides , Ratos , Espermatogênese/genética , Espermatogônias/transplante , Transplante de Células-Tronco
10.
Sci Rep ; 11(1): 24199, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921203

RESUMO

Germline mutations underlie genetic diversity and species evolution. Previous studies have assessed the theoretical mutation rates and spectra in germ cells mostly by analyzing genetic markers and reporter genes in populations and pedigrees. This study reported the direct measurement of germline mutations by whole-genome sequencing of cultured spermatogonial stem cells in mice, namely germline stem (GS) cells, together with multipotent GS (mGS) cells that spontaneously dedifferentiated from GS cells. GS cells produce functional sperm that can generate offspring by transplantation into seminiferous tubules, whereas mGS cells contribute to germline chimeras by microinjection into blastocysts in a manner similar to embryonic stem cells. The estimated mutation rate of GS and mGS cells was approximately 0.22 × 10-9 and 1.0 × 10-9 per base per cell population doubling, respectively, indicating that GS cells have a lower mutation rate compared to mGS cells. GS and mGS cells also showed distinct mutation patterns, with C-to-T transition as the most frequent in GS cells and C-to-A transversion as the most predominant in mGS cells. By karyotype analysis, GS cells showed recurrent trisomy of chromosomes 15 and 16, whereas mGS cells frequently exhibited chromosomes 1, 6, 8, and 11 amplifications, suggesting that distinct chromosomal abnormalities confer a selective growth advantage for each cell type in vitro. These data provide the basis for studying germline mutations and a foundation for the future utilization of GS cells for reproductive technology and clinical applications.


Assuntos
Células-Tronco Embrionárias/metabolismo , Instabilidade Genômica/fisiologia , Animais , Quimera/metabolismo , Biologia Computacional , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Mutação , Espécies Reativas de Oxigênio/metabolismo , Túbulos Seminíferos/metabolismo , Espermatogônias/citologia , Espermatozoides
11.
Cell Rep ; 36(7): 109550, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34407418

RESUMO

Spermatogonial stem cells (SSCs) are maintained in a special microenvironment called a niche. However, much is unknown about components that constitute the niche. Here, we report that Cdc42 is essential for germline niche development. Sertoli cell-specific Cdc42-deficient mice showed normal premeiotic spermatogenesis. However, germ cells gradually disappeared during haploid cell formation and few germ cells remained in the mature testes. Spermatogonial transplantation experiments revealed a significant loss of SSCs in Cdc42-deficient testes. Moreover, Cdc42 deficiency in Sertoli cells downregulated GDNF, a critical factor for SSC maintenance. Cdc42-deficient Sertoli cells also exhibited lower nuclear MAPK1/3 staining. Inhibition of MAP2K1 or depletion of Pea15a scaffold protein downregulated GDNF expression. A screen of transcription factors revealed that Cdc42-deficient Sertoli cells downregulate DMRT1 and SOX9, both of which are critical for Sertoli cell development. These results indicate that Cdc42 is essential for niche function via MAPK1/3-dependent GDNF secretion.


Assuntos
Células Germinativas/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Animais , Microambiente Celular , Regulação para Baixo , Desenvolvimento Embrionário , Deleção de Genes , Regulação da Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação , Fatores de Transcrição SOX/metabolismo , Células de Sertoli/metabolismo , Espermatogônias/transplante , Testículo/metabolismo , Fatores de Transcrição/metabolismo
12.
Stem Cell Reports ; 16(7): 1832-1844, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34143973

RESUMO

Spermatogonial transplantation has been used as a standard assay for spermatogonial stem cells (SSCs). After transplantation into the seminiferous tubules, SSCs transmigrate through the blood-testis barrier (BTB) between Sertoli cells and settle in a niche. Unlike in the repair of other self-renewing systems, SSC transplantation is generally performed after complete destruction of endogenous spermatogenesis. Here, we examined the impacts of recipient conditioning on SSC homing. Germ cell ablation downregulated the expression of glial cell line-derived neurotrophic factor, which has been shown to attract SSCs to niches, implying that nonablated niches would attract SSCs more efficiently. As expected, SSCs colonized nonablated testes when transplanted into recipients with the same genetic background. Moreover, although spermatogenesis was arrested at the spermatocyte stage in Cldn11-deficient mice without a BTB, transplantation not only enhanced donor colonization but also restored normal spermatogenesis. The results show promise for the development of a new transplantation strategy to overcome male infertility.


Assuntos
Espermatogônias/citologia , Espermatogônias/transplante , Transplante de Células-Tronco , Testículo/citologia , Animais , Apoptose , Biomarcadores/metabolismo , Bussulfano/farmacologia , Claudinas/metabolismo , Citocinas/metabolismo , Células Germinativas/efeitos dos fármacos , Células Germinativas/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Masculino , Camundongos Knockout , Regeneração/efeitos dos fármacos , Espermatogênese
13.
Proc Natl Acad Sci U S A ; 117(14): 7837-7844, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32229564

RESUMO

The blood-testis barrier (BTB) is thought to be indispensable for spermatogenesis because it creates a special environment for meiosis and protects haploid cells from the immune system. The BTB divides the seminiferous tubules into the adluminal and basal compartments. Spermatogonial stem cells (SSCs) have a unique ability to transmigrate from the adluminal compartment to the basal compartment through the BTB upon transplantation into the seminiferous tubule. Here, we analyzed the role of Cldn11, a major component of the BTB, in spermatogenesis using spermatogonial transplantation. Cldn11-deficient mice are infertile due to the cessation of spermatogenesis at the spermatocyte stage. Cldn11-deficient SSCs failed to colonize wild-type testes efficiently, and Cldn11-deficient SSCs that underwent double depletion of Cldn3 and Cldn5 showed minimal colonization, suggesting that claudins on SSCs are necessary for transmigration. However, Cldn11-deficient Sertoli cells increased SSC homing efficiency by >3-fold, suggesting that CLDN11 in Sertoli cells inhibits transmigration of SSCs through the BTB. In contrast to endogenous SSCs in intact Cldn11-deficient testes, those from WT or Cldn11-deficient testes regenerated sperm in Cldn11-deficient testes. The success of this autologous transplantation appears to depend on removal of endogenous germ cells for recipient preparation, which reprogrammed claudin expression patterns in Sertoli cells. Consistent with this idea, in vivo depletion of Cldn3/5 regenerated endogenous spermatogenesis in Cldn11-deficient mice. Thus, coordinated claudin expression in both SSCs and Sertoli cells expression is necessary for SSC homing and regeneration of spermatogenesis, and autologous stem cell transplantation can rescue congenital defects of a self-renewing tissue.


Assuntos
Fertilidade/genética , Infertilidade/terapia , Espermatogônias/transplante , Transplante de Células-Tronco , Animais , Modelos Animais de Doenças , Fertilidade/fisiologia , Humanos , Infertilidade/genética , Infertilidade/patologia , Masculino , Camundongos , Espermatogênese/genética , Espermatogônias/crescimento & desenvolvimento , Espermatozoides/crescimento & desenvolvimento , Espermatozoides/transplante , Células-Tronco/citologia , Transplante Autólogo/métodos
14.
Stem Cell Reports ; 14(3): 447-461, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32160520

RESUMO

Spermatogonial stem cells (SSCs) serve as a resource for producing genetically modified animals. However, genetic manipulation of SSCs has met with limited success. Here, we show efficient gene transfer into SSCs via a lentivirus (FV-LV) using a fusion protein (F), a Sendai virus (SV) envelope protein involved in virion/cell membrane fusion. FV-LVs transduced cultured SSCs more efficiently than conventional LVs. Although SSCs infected with SV failed to produce offspring, those transduced with FV-LVs were fertile. In vivo microinjection showed that FV-LVs could penetrate not only the basement membrane of the seminiferous tubules but also the blood-testis barrier, which resulted in successful transduction of both spermatogenic cells and testicular somatic cells. Cultured SSCs transfected with FV-LVs that express drug-inducible CRISPR/Cas9 against Kit or Sycp3 showed impaired spermatogenesis upon transplantation and drug treatment in vivo. Thus, FV-LVs provide an efficient method for functional analysis of genes involved in SSCs and spermatogenesis.


Assuntos
Edição de Genes , Técnicas de Transferência de Genes , Genoma , Lentivirus/metabolismo , Vírus Sendai/metabolismo , Espermatogônias/citologia , Células-Tronco/metabolismo , Proteínas Virais de Fusão/metabolismo , Animais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Cinética , Masculino , Camundongos Transgênicos , Fenótipo , Células de Sertoli/metabolismo , Espermatogênese/genética , Integração Viral
15.
J Reprod Dev ; 66(4): 341-349, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32213736

RESUMO

The spermatogonial stem cell (SSC) population in testis is small, and the lack of SSC markers has severely handicapped research on these cells. During our attempt to identify genes involved in SSC aging, we found that CD2 is expressed in cultured SSCs. Flow cytometric analysis and spermatogonial transplantation experiments showed that CD2 is expressed in SSCs from mature adult mouse testes. Cultured SSCs transfected with short hairpin RNAs (shRNAs) against CD2 proliferated poorly and showed an increased frequency of apoptosis. Moreover, functional analysis of transfected cells revealed impairment of SSC activity. Fluorescence activated cell sorting and spermatogonial transplantation experiments showed that CD2 is expressed not only in mouse but also in rat SSCs. The results indicate that CD2 is a novel SSC surface marker conserved between mouse and rat SSCs.


Assuntos
Células-Tronco Germinativas Adultas/metabolismo , Antígenos CD2/metabolismo , Espermatogênese/fisiologia , Espermatogônias/metabolismo , Animais , Citometria de Fluxo , Masculino , Camundongos , Ratos
16.
Biol Reprod ; 102(1): 220-232, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31403678

RESUMO

Spermatogonial stem cells (SSCs) undergo continuous self-renewal division in response to self-renewal factors. The present study identified ephrin type-A receptor 2 (EPHA2) on mouse SSCs and showed that supplementation of glial cell-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2), which are both SSC self-renewal factors, induced EPHA2 expression in cultured SSCs. Spermatogonial transplantation combined with magnetic-activated cell sorting or fluorescence-activated cell sorting also revealed that EPHA2 was expressed in SSCs. Additionally, ret proto-oncogene (RET) phosphorylation levels decreased following the knockdown (KD) of Epha2 expression via short hairpin ribonucleic acid (RNA). Although the present immunoprecipitation experiments did not reveal an association between RET with EPHA2, RET interacted with FGFR2. The Epha2 KD decreased the proliferation of cultured SSCs and inhibited the binding of cultured SSCs to laminin-coated plates. The Epha2 KD also significantly reduced the colonization of testis cells by spermatogonial transplantation. EPHA2 was also expressed in human GDNF family receptor alpha 1-positive spermatogonia. The present results indicate that SSCs express EPHA2 and suggest that it is a critical modifier of self-renewal signals in SSCs.


Assuntos
Células-Tronco Germinativas Adultas/metabolismo , Receptores da Família Eph/metabolismo , Espermatogônias/metabolismo , Testículo/metabolismo , Células-Tronco Germinativas Adultas/citologia , Animais , Proliferação de Células/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Masculino , Camundongos , Fosforilação , Proto-Oncogene Mas , RNA Interferente Pequeno , Receptores da Família Eph/genética , Espermatogônias/citologia
17.
Proc Natl Acad Sci U S A ; 116(33): 16404-16409, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31358627

RESUMO

Because spermatogonial stem cells (SSCs) are immortal by serial transplantation, SSC aging in intact testes is considered to be caused by a deteriorated microenvironment. Here, we report a cell-intrinsic mode of SSC aging by glycolysis activation. Using cultured SSCs, we found that aged SSCs proliferated more actively than young SSCs and showed enhanced glycolytic activity. Moreover, they remained euploid and exhibited stable androgenetic imprinting patterns with robust SSC activity despite having shortened telomeres. Aged SSCs showed increased Wnt7b expression, which was associated with decreased Polycomb complex 2 activity. Our results suggest that aberrant Wnt7b expression activated c-jun N-terminal kinase (JNK), which down-regulated mitochondria numbers by suppressing Ppargc1a Down-regulation of Ppargc1a probably decreased reactive oxygen species and enhanced glycolysis. Analyses of the Klotho-deficient aging mouse model and 2-y-old aged rats confirmed JNK hyperactivation and increased glycolysis. Therefore, not only microenvironment but also intrinsic activation of JNK-mediated glycolysis contributes to SSC aging.


Assuntos
Envelhecimento/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Proteínas Proto-Oncogênicas/genética , Espermatogênese/genética , Proteínas Wnt/genética , Células-Tronco Germinativas Adultas/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento , Glucuronidase/genética , Glicólise/genética , Proteínas Klotho , Masculino , Camundongos , Proteínas do Grupo Polycomb/genética , Ratos , Espécies Reativas de Oxigênio/metabolismo , Espermatogônias/crescimento & desenvolvimento , Espermatogônias/metabolismo , Nicho de Células-Tronco/genética , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
18.
Biol Reprod ; 100(2): 523-534, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30165393

RESUMO

Spermatogonial stem cells (SSCs) provide the foundation of spermatogenesis. However, because of their small number and slow self-renewal, transfection of SSCs has met with limited success. Although several viral vectors can infect SSCs, genome integration and an inability to maintain long-term gene expression have hampered studies on SSCs. Here we report successful SSC infection by Sendai virus (SV), an RNA virus in the Paramyxoviridae. The SV efficiently transduced germline stem (GS) cells, cultured spermatogonia with enriched SSC activity, and maintained gene expression for at least 5 months. It also infected freshly isolated SSCs from adult testes. The transfected GS cells reinitiated spermatogenesis following spermatogonial transplantation into seminiferous tubules of infertile mice, suggesting that SV transfection does not interfere with spermatogenesis progression. On the other hand, microinjection of SV into the seminiferous tubules of immature mice transduced SSCs and Sertoli cells, but did not transduce Leydig or peritubular cells by interstitial virus injection. SV-infected hamster GS cells, and freshly isolated rabbit or monkey SSC-like cells were identified following xenogeneic spermatogonial transplantation, suggesting that SV transduces SSCs from several mammalian species. Thus, SV is a useful vector that can transduce both SSCs and Sertoli cells and overcome problems associated with other viral vectors.


Assuntos
Células-Tronco Germinativas Adultas , Vírus Sendai/fisiologia , Transdução Genética/métodos , Animais , Cricetinae , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Transgênicos , Células de Sertoli , Espermatogênese/fisiologia , Espermatogônias/metabolismo
19.
Stem Cell Reports ; 10(5): 1551-1564, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29628393

RESUMO

Adeno-associated virus (AAV) penetrates the blood-brain barrier, but it is unknown whether AAV penetrates other tight junctions. Genetic manipulation of testis has been hampered by the basement membrane of seminiferous tubules and the blood-testis barrier (BTB), which forms between Sertoli cells and divides the tubules into basal and adluminal compartments. Here, we demonstrate in vivo genetic manipulation of spermatogonial stem cells (SSCs) and their microenvironment via AAV1/9. AAV1/9 microinjected into the seminiferous tubules penetrated both the basement membrane and BTB, thereby transducing not only Sertoli cells and SSCs but also peritubular cells and Leydig cells. Moreover, when congenitally infertile KitlSl/KitlSl-d mouse testes with defective Sertoli cells received Kitl-expressing AAVs, spermatogenesis regenerated and offspring were produced. None of the offspring contained the AAV genome. Thus, AAV1/9 allows efficient germline and niche manipulation by penetrating the BTB and basement membrane, providing a promising strategy for the development of gene therapies for reproductive defects.


Assuntos
Microambiente Celular , Dependovirus/metabolismo , Técnicas Genéticas , Espermatogônias/citologia , Células-Tronco/citologia , Animais , Infertilidade Masculina/patologia , Cinética , Masculino , Camundongos Endogâmicos C57BL , Microinjeções , Neuraminidase/metabolismo , Sorogrupo , Células de Sertoli/patologia , Espermatogênese , Espermatogônias/metabolismo , Espermatozoides/citologia , Fator de Células-Tronco/metabolismo , Células-Tronco/metabolismo , Testículo/citologia
20.
Biol Reprod ; 97(6): 902-910, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29136097

RESUMO

Vast amounts of sperm are produced from spermatogonial stem cells (SSCs), which continuously undergo self-renewal. We examined the possible effect of laterality in male germline transmission efficiency of SSCs using a spermatogonial transplantation technique. We transplanted the same number of wild-type and Egfp transgenic SSCs in the same or different testes of individual recipient mice and compared the fertility of each type of recipient by natural mating. Transgenic mice were born within 3 months after transplantation regardless of the transplantation pattern. However, transgenic offspring were born at a significantly increased frequency when wild-type and transgenic SSCs were transplanted separately. In addition, this type of recipient sired significantly more litters that consisted exclusively of transgenic mice, which suggested that left and right testes have different time windows for fertilization. Thus, laterality plays an important role in germline transmission patterns from SSCs.


Assuntos
Células-Tronco Germinativas Adultas/transplante , Espermatogônias/transplante , Testículo/citologia , Animais , Feminino , Fertilidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA