RESUMO
A 69-year-old man was diagnosed with follicular lymphoma (Grade 3A). Obinutuzumab combined with bendamustine (OB) therapy was initiated as salvage chemotherapy. Nausea, abdominal pain, and hyponatremia appeared after six courses of OB therapy; cytomegalovirus (CMV) enteritis with primary adrenal insufficiency (PAI) was a complication. Ganciclovir and hydrocortisone were administered, and the clinical findings improved. PAI caused by CMV infection has mainly been reported in patients with acquired immunodeficiency syndrome. In the present case, the PAI triggered by CMV infection led to immunodeficiency after chemotherapy.
RESUMO
The small GTPase Rho and its downstream effector, Rho-kinase (ROCK), regulate various cellular functions, including organization of the actin cytoskeleton, cell adhesion and migration. A pro-inflammatory lipid mediator, lysophosphatidic acid (LPA), is a potent activator of the Rho/ROCK signalling pathway and has been shown to induce the expression of chemokines and cell adhesion molecules (CAMs). In the present study, we aimed to elucidate the precise mechanism by which ROCK regulates LPA-induced expressions and functions of chemokines and CAMs. We observed that ROCK blockade reduced LPA-induced phosphorylation of IκBα and inhibited NF-κB RelA/p65 phosphorylation, leading to attenuation of RelA/p65 nuclear translocation. Furthermore, small interfering RNA-mediated ROCK isoform knockdown experiments revealed that LPA induces the expression of monocyte chemoattractant protein-1 (MCP-1) and E-selectin via ROCK2 in human aortic endothelial cells (HAECs). Importantly, we found that ROCK2 but not ROCK1 controls LPA-induced monocytic migration and monocyte adhesion toward endothelial cells. These findings demonstrate that ROCK2 is a key regulator of endothelial inflammation. We conclude that targeting endothelial ROCK2 is potentially effective in attenuation of atherosclerosis.
Assuntos
Aterosclerose/genética , Células Endoteliais/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Quinases Associadas a rho/genética , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/genética , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Aorta/citologia , Aorta/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Adesão Celular/genética , Movimento Celular/efeitos dos fármacos , Quimiocina CCL2/genética , Selectina E/genética , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Quinase I-kappa B/genética , Monócitos/efeitos dos fármacos , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/genética , Quinases Associadas a rho/metabolismoRESUMO
Glucagon-like peptide-1 (GLP-1) is thought to preserve neurons and glia following axonal injury and neurodegenerative disorders. We investigated the neurotrophic and neuroprotective properties of exendin (Ex)-4, a synthetic GLP-1 receptor (GLP-1R) agonist, on adult rat dorsal root ganglion (DRG) neurons and PC12 cells. GLP-1R was predominantly localized on large and small peptidergic neurons in vivo and in vitro, suggesting the involvement of GLP-1 in both the large and small sensory fiber functions. Ex-4 dose-dependently (1 ≤ 10 ≤ 100 nM) promoted neurite outgrowth and neuronal survival at 2 and 7 days in culture, respectively. Treatment with 100 nM Ex-4 restored the reduced neurite outgrowth and viability of DRG neurons caused by the insulin removal from the medium and suppressed the activity of RhoA, an inhibitory regulator for peripheral nerve regeneration, in PC12 cells. Furthermore, these effects were attenuated by co-treatment with phosphatidylinositol-3'-phosphate kinase (PI3K) inhibitor, LY294002. These findings imply that Ex-4 enhances neurite outgrowth and neuronal survival through the activation of PI3K signaling pathway, which negatively regulates RhoA activity. Ex-4 and other GLP-1R agonists may compensate for the reduced insulin effects on neurons, thereby being beneficial for the treatment of diabetic neuropathy.
Assuntos
Gânglios Espinais/fisiologia , Insulina/fisiologia , Neurônios/fisiologia , Fármacos Neuroprotetores/farmacologia , Peptídeos/farmacologia , Peçonhas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromonas/farmacologia , Exenatida , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Morfolinas/farmacologia , Neuritos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Células PC12 , Inibidores de Fosfoinositídeo-3 Quinase , Ratos , Ratos Wistar , Receptores de Glucagon/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/fisiologiaRESUMO
The small GTPase Rho and its downstream effector, Rho-associated coiled-coil containing protein kinase (Rho-kinase), regulate a number of cellular processes, including organization of the actin cytoskeleton, cell adhesion, and migration. While pharmacological inhibitors of Rho-kinase signaling are known to block renal inflammation, the molecular basis for this effect is unclear. Here, we provide evidence that proinflammatory TNF-α promotes mesangial expression of macrophage colony-stimulating factor (M-CSF), a key regulator for the growth and differentiation of mononuclear phagocytes, in a Rho-kinase-dependent manner. Consistent with this observation, TNF-α-mediated renal expression of M-CSF in insulin-resistant db/db mice was downregulated by Rho-kinase inhibition. Small interfering RNA-facilitated knockdown of Rho-kinase isoforms ROCK1 and ROCK2 indicated that both isoforms make comparable contributions to regulation of M-CSF expression in mesangial cells. From a mechanistic standpoint, Western blotting and EMSA showed that Rho-kinase and its downstream target p38 MAPK regulate nuclear translocation of NF-κB RelA/p65 and subsequent DNA binding activity, with no significant effects on IκBα degradation and RelA/p65 phosphorylation. Moreover, we showed that Rho-kinase-mediated cytoskeletal organization is required for the nuclear uptake of RelA/p65. Collectively, these findings identify Rho-kinase as a critical regulator of chemokine expression and macrophage proliferation.
Assuntos
Fator Estimulador de Colônias de Macrófagos/metabolismo , Células Mesangiais/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases Associadas a rho/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Quimiocinas/metabolismo , Citoesqueleto/metabolismo , Técnicas In Vitro , Macrófagos/citologia , Masculino , Células Mesangiais/citologia , Camundongos , Camundongos Endogâmicos , Modelos Animais , Transporte ProteicoRESUMO
BACKGROUND: Sphingosine-1-phosphate (S1P) is reportedly involved in the pathogenesis of kidney disease; however, the precise role played by S1P in renal disorders still remains controversial. Rho kinase plays an important role in the development of diabetic nephropathy by inducing glomerular and tubulointerstitial fibrosis. Rho kinase is known to be stimulated by S1P through its specific receptor, S1P2 receptor (S1P2). Hence, we investigated whether S1P-S1P2 signaling plays a role in the epithelial-mesenchymal transition (EMT) through Rho kinase activation in renal tubules. METHOD: To characterize the distribution of the S1P2, an immunohistochemical examination of the receptor was performed in the kidney of the non-diabetic and diabetic mice. Next, we examined Rho kinase activity as well as E-cadherin and alpha-smooth muscle actin (α-SMA) expression by real-time RT-PCR and western blotting in cultured rat tubular epithelial cells under S1P stimulation with and without a Rho kinase inhibitor and an S1P2 blocker. In addition, the distribution of E-cadherin and α-SMA was examined by immunocytochemistry. RESULT: S1P2 was expressed mainly in the renal tubules; expression was intense in collecting ducts and distal tubules compared to other segments. S1P induced activation of Rho kinase through the S1P2, which changed the distribution of E-cadherin and increased the expression of α-SMA. CONCLUSION: Rho kinase activation by S1P via S1P2 initiated EMT changes in cultured renal tubular cells. Our results suggest that excessive stimulation of S1P might facilitate renal fibrosis via activation of Rho kinase through S1P2.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Túbulos Renais/patologia , Lisofosfolipídeos/farmacologia , Receptores de Lisoesfingolipídeo/fisiologia , Esfingosina/análogos & derivados , Quinases Associadas a rho/fisiologia , Actinas/fisiologia , Animais , Caderinas/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Células Epiteliais/patologia , Células Epiteliais/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Túbulos Renais/fisiologia , Masculino , Camundongos , Camundongos Knockout , Receptores para Leptina/deficiência , Receptores para Leptina/genética , Receptores para Leptina/fisiologia , Esfingosina/farmacologiaRESUMO
Macrophage accumulation has been implicated in the pathogenesis of inflammatory glomerular disease. Monocyte chemoattractant protein-1 (MCP-1) plays a central role in recruiting monocytes to the glomeruli. Tumor necrosis factor-α (TNF-α) has been shown to induce MCP-1 expression in mesangial cells, although the precise mechanisms remain unclear. We previously demonstrated that RhoA and its effector, Rho-kinase (Rho-associated coiled-coil containing protein kinase, ROCK), are involved in the pathogenesis of diabetic nephropathy. However, its role in MCP-1 induction by TNF-α has not been elucidated. In the present study, we investigated whether the Rho/Rho-kinase signaling pathway regulates the TNF-α-mediated induction of MCP-1 in mesangial cells. Exposure of mouse mesangial cells (MES-13) to TNF-α resulted in an increase of MCP-1 expression (by RT-PCR) and secretion into the medium (by ELISA). Pull down and Western blot analysis revealed that TNF-α activated RhoA and Rho-kinase. Based on these observations, we speculated that the Rho/Rho-kinase signaling pathway may be involved in MCP-1 induction by TNF-α. In agreement with this concept, Y-27632, a specific Rho-kinase inhibitor, attenuated TNF-α-mediated induction of MCP-1. We demonstrated that Y-27632 inhibited TNF-α-mediated monocyte migration and attenuated TNF-α-mediated p38 MAPK activation. Based on these data we infer that Y-27632 inhibits TNF-α-induced MCP-1 expression, secretion and function through inhibition of Rho-kinase and p38 MAPK activity. Our study suggests that Rho/Rho-kinase is an important therapeutic target of monocyte recruitment and accumulation within the glomerulus in inflammatory renal disease.
Assuntos
Quimiocina CCL2/metabolismo , Células Mesangiais/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases Associadas a rho/metabolismo , Amidas/farmacologia , Animais , Linhagem Celular , Quimiotaxia , Inibidores Enzimáticos/farmacologia , Glomerulonefrite/metabolismo , Células Mesangiais/efeitos dos fármacos , Camundongos , Piridinas/farmacologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/fisiologia , Quinases Associadas a rho/antagonistas & inibidoresRESUMO
AIM: Menopause is a risk factor for cardiovascular disease (CVD) in women because of the reduction in endogenous estrogen. Recently, single nucleotide polymorphisms (SNPs) of the estrogen receptor alpha (ESR-1) gene (c.454-397T>C) associated with the prognosis of myocardial infarction in postmenopausal women were identified; however, the mechanism by which genetic variation of ESR-1 contributes to the pathogenesis of CVD is unknown. Circulating levels of adipokines and inflammatory cytokines predict CVD risk; hence, this study aimed to investigate whether ESR-1 genotypes (c.454-397T>C) might influence circulating levels of adipokines and inflammatory cytokines in postmenopausal women with type 2 diabetes. METHODS: Sixty-three postmenopausal women with type 2 diabetes were recruited. Serum levels of adiponectin, resistin, interleukin-6 (IL-6), and high-sensitive C-reactive protein (hs-CRP) were determined. RESULTS: The genotype of ESR-1 was closely associated with serum adiponectin, which was decreased in subjects with the T allele and was lowest in those with the T/T genotype. Multiple logistic regression analysis revealed independent contribution of the homozygote for the T allele to low serum levels of adiponectin. CONCLUSION: The T allele of the c.454-397T>C SNP of ESR-1 is associated with low serum levels of adiponectin, which may lead to a high risk of CVD in postmenopausal women.