Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 56(3): 526-536, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25548259

RESUMO

ApoA5 has a critical role in the regulation of plasma TG concentrations. In order to determine whether ApoA5 also impacts ectopic lipid deposition in liver and skeletal muscle, as well as tissue insulin sensitivity, we treated mice with an antisense oligonucleotide (ASO) to decrease hepatic expression of ApoA5. ASO treatment reduced ApoA5 protein expression in liver by 60-70%. ApoA5 ASO-treated mice displayed approximately 3-fold higher plasma TG concentrations, which were associated with decreased plasma TG clearance. Furthermore, ApoA5 ASO-treated mice fed a high-fat diet (HFD) exhibited reduced liver and skeletal muscle TG uptake and reduced liver and muscle TG and diacylglycerol (DAG) content. HFD-fed ApoA5 ASO-treated mice were protected from HFD-induced insulin resistance, as assessed by hyperinsulinemic-euglycemic clamps. This protection could be attributed to increases in both hepatic and peripheral insulin responsiveness associated with decreased DAG activation of protein kinase C (PKC)-ε and PKCθ in liver and muscle, respectively, and increased insulin-stimulated AKT2 pho-sphory-lation in these tissues. In summary, these studies demonstrate a novel role for ApoA5 as a modulator of susceptibility to diet-induced liver and muscle insulin resistance through regulation of ectopic lipid accumulation in liver and skeletal muscle.


Assuntos
Apolipoproteínas/metabolismo , Gorduras na Dieta/farmacologia , Resistência à Insulina , Fígado/metabolismo , Músculo Esquelético/metabolismo , Triglicerídeos/metabolismo , Animais , Apolipoproteína A-V , Apolipoproteínas/genética , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Proteína Quinase C-épsilon/genética , Proteína Quinase C-épsilon/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Triglicerídeos/genética
2.
Endocrinology ; 154(3): 1021-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23364948

RESUMO

Estrogen replacement therapy reduces the incidence of type 2 diabetes in postmenopausal women; however, the mechanism is unknown. Therefore, the aim of this study was to evaluate the metabolic effects of estrogen replacement therapy in an experimental model of menopause. At 8 weeks of age, female mice were ovariectomized (OVX) or sham (SHAM) operated, and OVX mice were treated with vehicle (OVX) or estradiol (E2) (OVX+E2). After 4 weeks of high-fat diet feeding, OVX mice had increased body weight and fat mass compared with SHAM and OVX+E2 mice. OVX mice displayed reduced whole-body energy expenditure, as well as impaired glucose tolerance and whole-body insulin resistance. Differences in whole-body insulin sensitivity in OVX compared with SHAM mice were accounted for by impaired muscle insulin sensitivity, whereas both hepatic and muscle insulin sensitivity were impaired in OVX compared with OVX+E2 mice. Muscle diacylglycerol (DAG), content in OVX mice was increased relative to SHAM and OVX+E2 mice. In contrast, E2 treatment prevented the increase in hepatic DAG content observed in both SHAM and OVX mice. Increases in tissue DAG content were associated with increased protein kinase Cε activation in liver of SHAM and OVX mice compared with OVX+E2 and protein kinase Cθ activation in skeletal muscle of OVX mice compared with SHAM and OVX+E2. Taken together, these data demonstrate that E2 plays a pivotal role in the regulation of whole-body energy homeostasis, increasing O(2) consumption and energy expenditure in OVX mice, and in turn preventing diet-induced ectopic lipid (DAG) deposition and hepatic and muscle insulin resistance.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Estradiol/metabolismo , Estradiol/farmacologia , Resistência à Insulina/fisiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/prevenção & controle , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Estradiol/deficiência , Terapia de Reposição de Estrogênios , Feminino , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Menopausa/metabolismo , Camundongos , Modelos Animais , Ovariectomia , Proteína Quinase C/metabolismo
3.
Biol Pharm Bull ; 34(7): 1094-104, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21720019

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ; NR1C3) is known as a key regulator of adipocytogenesis and the molecular target of thiazolidinediones (TZDs), also known as antidiabetic agents. Despite the clinical benefits of TZDs, their use is often associated with adverse effects including peripheral edema, congestive heart failure, and weight gain. Here we report the identification and characterization of a non-thiazolidinedione PPARγ partial agonist, Cerco-A, which is a derivative of the natural product, (-)-cercosporamide. Cerco-A was found to be a binder of the PPARγ ligand-binding domain in a ligand competitive binding assay and showed a unique cofactor recruitment profile compared to rosiglitazone. A crystal structure analysis revealed that Cerco-A binds to PPARγ without direct hydrogen bonding to helix12. In PPARγ transcriptional activation assay and an adipocyte differentiation assay, Cerco-A was a potent partial agonist of PPARγ. After a 14-day oral administration, once per day of Cerco-A in Zucker diabetic fatty (ZDF) rats, an apparent decrease of plasma glucose and triglyceride was observed, as with pioglitazone. To evaluate drug safety, Cerco-A was administered for 13 days orally in non-diabetic Zucker fatty (ZF) rats. Each of the hemodilution parameters (hematocrit, red blood cells number, and hemoglobin), which are considered as undesirable effects of TZDs, was improved significantly compared to pioglitazone. While Cerco-A showed body weight gain, as with pioglitazone, Cerco-A had significantly lower effects on heart and white adipose tissues weight gain. The results suggest that Cerco-A offers beneficial effects on glycemic control with attenuated undesirable side effects.


Assuntos
Benzofuranos/farmacologia , PPAR gama/farmacologia , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Sequência de Bases , Benzofuranos/administração & dosagem , Benzofuranos/química , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Primers do DNA , Polarização de Fluorescência , Humanos , Ligantes , Estrutura Molecular , PPAR gama/genética , PPAR gama/metabolismo , Ratos , Ratos Zucker
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA