Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur Heart J Open ; 4(3): oeae034, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38854954

RESUMO

Aims: Chronic neurohormonal activation and haemodynamic load cause derangement in the utilization of the myocardial substrate. In this study, we test the hypothesis that the primary mitral regurgitation (PMR) heart shows an altered metabolic gene profile and cardiac ultra-structure consistent with decreased fatty acid and glucose metabolism despite a left ventricular ejection fraction (LVEF) > 60%. Methods and results: Metabolic gene expression in right atrial (RA), left atrial (LA), and left ventricular (LV) biopsies from donor hearts (n = 10) and from patients with moderate-to-severe PMR (n = 11) at surgery showed decreased mRNA glucose transporter type 4 (GLUT4), GLUT1, and insulin receptor substrate 2 and increased mRNA hexokinase 2, O-linked N-acetylglucosamine transferase, and O-linked N-acetylglucosaminyl transferase, rate-limiting steps in the hexosamine biosynthetic pathway. Pericardial fluid levels of neuropeptide Y were four-fold higher than simultaneous plasma, indicative of increased sympathetic drive. Quantitative transmission electron microscopy showed glycogen accumulation, glycophagy, increased lipid droplets (LDs), and mitochondrial cristae lysis. These findings are associated with increased mRNA for glycogen synthase kinase 3ß, decreased carnitine palmitoyl transferase 2, and fatty acid synthase in PMR vs. normals. Cardiac magnetic resonance and positron emission tomography for 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) uptake showed decreased LV [18F]FDG uptake and increased plasma haemoglobin A1C, free fatty acids, and mitochondrial damage-associated molecular patterns in a separate cohort of patients with stable moderate PMR with an LVEF > 60% (n = 8) vs. normal controls (n = 8). Conclusion: The PMR heart has a global ultra-structural and metabolic gene expression pattern of decreased glucose uptake along with increased glycogen and LDs. Further studies must determine whether this presentation is an adaptation or maladaptation in the PMR heart in the clinical evaluation of PMR.

2.
Free Radic Biol Med ; 208: 126-133, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543167

RESUMO

BACKGROUND: Primary mitral regurgitation (PMR) is associated with oxidative and inflammatory myocardial damage. We reported greater exosome hemoglobin (Hb) in pericardial fluid (PCF) versus plasma, suggesting a cardiac source of Hb. OBJECTIVE: Test the hypothesis that Hb is produced in the PMR heart and is associated with increased inflammation. METHODS AND RESULTS: Hb gene expression for subunits alpha (HBA) and beta (HBB) was assessed in right atria (RA), left atria (LA) and left ventricular (LV) tissue from donor hearts (n = 10) and PMR patient biopsies at surgery (n = 11). PMR patients (n = 22) had PCF and blood collected for macrophage markers, pro-inflammatory cytokines, and matrix metalloproteinases (MMPs). In-situ hybridization for HBA mRNA and immunohistochemistry for Hb-alpha (Hbα) and Hb-beta (Hbß) protein was performed on PMR tissue. RESULTS: HBA and HBB genes are significantly increased (>4-fold) in RA, LA, and LV in PMR vs. normal hearts. In PMR tissue, HBA mRNA is expressed in both LV cardiomyocytes and interstitial cells by in-situ hybridization; however, Hbα and Hbß protein is only expressed in interstitial cells by immunohistochemistry. PCF oxyHb is significantly increased over plasma along with low ratios (<1.0) of haptoglobin:oxyHb and hemopexin:heme supporting a highly oxidative environment. Macrophage chemotactic protein-1, tumor necrosis factor-α, interleukin-6, and MMPs are significantly higher in PCF vs. plasma. CONCLUSION: There is increased Hb production in the PMR heart coupled with the inflammatory state of the heart, suggests a myocardial vulnerability of further Hb delivery and/or production during cardiac surgery that could adversely affect LV functional recovery.


Assuntos
Transplante de Coração , Insuficiência da Valva Mitral , Humanos , Insuficiência da Valva Mitral/genética , Insuficiência da Valva Mitral/cirurgia , Doadores de Tecidos , Hemoglobinas/genética , Estresse Oxidativo , RNA Mensageiro/genética , Metaloproteinases da Matriz
3.
Am J Physiol Heart Circ Physiol ; 324(4): H484-H493, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36800507

RESUMO

Mitochondrial DNA (mtDNA) haplotype regulates mitochondrial structure/function and reactive oxygen species in aortocaval fistula (ACF) in mice. Here, we unravel the mitochondrial haplotype effects on cardiomyocyte mitochondrial ultrastructure and transcriptome response to ACF in vivo. Phenotypic responses and quantitative transmission electron microscopy (TEM) and RNA sequence at 3 days were determined after sham surgery or ACF in vivo in cardiomyocytes from wild-type (WT) C57BL/6J (C57n:C57mt) and C3H/HeN (C3Hn:C3Hmt) and mitochondrial nuclear exchange mice (C57n:C3Hmt or C3Hn:C57mt). Quantitative TEM of cardiomyocyte mitochondria C3HWT hearts have more electron-dense compact mitochondrial cristae compared with C57WT. In response to ACF, mitochondrial area and cristae integrity are normal in C3HWT; however, there is mitochondrial swelling, cristae lysis, and disorganization in both C57WT and MNX hearts. Tissue analysis shows that C3HWT hearts have increased autophagy, antioxidant, and glucose fatty acid oxidation-related genes compared with C57WT. Comparative transcriptomic analysis of cardiomyocytes from ACF was dependent upon mtDNA haplotype. C57mtDNA haplotype was associated with increased inflammatory/protein synthesis pathways and downregulation of bioenergetic pathways, whereas C3HmtDNA showed upregulation of autophagy genes. In conclusion, ACF in vivo shows a protective response of C3Hmt haplotype that is in large part driven by mitochondrial nuclear genome interaction.NEW & NOTEWORTHY The results of this study support the effects of mtDNA haplotype on nuclear gene expression in cardiomyocytes. Currently, there is no acceptable therapy for volume overload due to mitral regurgitation. The findings of this study could suggest that mtDNA haplotype activates different pathways after ACF warrants further investigations on human population of heart disease from different ancestry backgrounds.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Camundongos , Animais , Humanos , Miócitos Cardíacos/metabolismo , Haplótipos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , DNA Mitocondrial/genética
4.
Sci Rep ; 8(1): 11528, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068998

RESUMO

OPA1 (Optic Atrophy 1) is a multi-isoform dynamin GTPase involved in the regulation of mitochondrial fusion and organization of the cristae structure of the mitochondrial inner membrane. Pathogenic OPA1 variants lead to a large spectrum of disorders associated with visual impairment due to optic nerve neuropathy. The aim of this study was to investigate the metabolomic consequences of complete OPA1 disruption in Opa1-/- mouse embryonic fibroblasts (MEFs) compared to their Opa1+/+ counterparts. Our non-targeted metabolomics approach revealed significant modifications of the concentration of several mitochondrial substrates, i.e. a decrease of aspartate, glutamate and α-ketoglutaric acid, and an increase of asparagine, glutamine and adenosine-5'-monophosphate, all related to aspartate metabolism. The signature further highlighted the altered metabolism of nucleotides and NAD together with deficient mitochondrial bioenergetics, reflected by the decrease of creatine/creatine phosphate and pantothenic acid, and the increase in pyruvate and glutathione. Interestingly, we recently reported significant variations of five of these molecules, including aspartate and glutamate, in the plasma of individuals carrying pathogenic OPA1 variants. Our findings show that the disruption of OPA1 leads to a remodelling of bioenergetic pathways with the central role being played by aspartate and related metabolites.


Assuntos
Metabolismo Energético , Fibroblastos/química , Fibroblastos/metabolismo , GTP Fosfo-Hidrolases/deficiência , Metaboloma , Animais , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo
5.
Invest Ophthalmol Vis Sci ; 59(1): 185-195, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29340645

RESUMO

Purpose: Dominant optic atrophy (DOA; MIM [Mendelian Inheritance in Man] 165500), resulting in retinal ganglion cell degeneration, is mainly caused by mutations in the optic atrophy 1 (OPA1) gene, which encodes a dynamin guanosine triphosphate (GTP)ase involved in mitochondrial membrane processing. This work aimed at determining whether plasma from OPA1 pathogenic variant carriers displays a specific metabolic signature. Methods: We applied a nontargeted clinical metabolomics pipeline based on ultra-high-pressure liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) allowing the exploration of 500 polar metabolites in plasma. We compared the plasma metabolic profiles of 25 patients with various OPA1 pathogenic variants and phenotypes to those of 20 healthy controls. Statistical analyses were performed using univariate and multivariate (principal component analysis [PCA], orthogonal partial least-squares discriminant analysis [OPLS-DA]) methods and a machine learning approach, the Biosigner algorithm. Results: A robust and relevant predictive model characterizing OPA1 individuals was obtained, based on a complex panel of metabolites with altered concentrations. An impairment of the purine metabolism, including significant differences in xanthine, hypoxanthine, and inosine concentrations, was at the foreground of this signature. In addition, the signature was characterized by differences in urocanate, choline, phosphocholine, glycerate, 1-oleoyl-rac-glycerol, rac-glycerol-1-myristate, aspartate, glutamate, and cystine concentrations. Conclusions: This first metabolic signature reported in the plasma of patient carrying OPA1 pathogenic variants highlights the unexpected involvement of purine metabolism in the pathophysiology of DOA.


Assuntos
GTP Fosfo-Hidrolases/genética , Atrofia Óptica Autossômica Dominante/sangue , Purinas/metabolismo , Adolescente , Adulto , Criança , Cromatografia Líquida de Alta Pressão , Feminino , Genótipo , Humanos , Masculino , Metaboloma , Metabolômica/métodos , Pessoa de Meia-Idade , Atrofia Óptica Autossômica Dominante/genética , Fenótipo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Adulto Jovem
6.
Biochem Pharmacol ; 148: 100-110, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29277693

RESUMO

The ring-substituted derivatives of carbonyl cyanide phenylhydrazone, CCCP and FCCP, are routinely used for the analysis of the mitochondrial function in living cells, tissues, and isolated mitochondrial preparations. CCCP and FCCP are now being increasingly used for investigating the mechanisms of autophagy by inducing mitochondrial degradation through the disruption of the mitochondrial membrane potential (ΔΨm). Sustained perturbation of ΔΨm, which is normally tightly controlled to ensure cell proliferation and survival, triggers various stress pathways as part of the cellular adaptive response, the main components of which are mitophagy and autophagy. We here review current mechanistic insights into the induction of mitophagy and autophagy by CCCP and FCCP. In particular, we analyze the cellular modifications produced by the activation of two major pathways involving the signaling of the nuclear factor erythroid 2-related factor 2 (Nrf2) and the transcription factor EB (TFEB), and discuss the contribution of these pathways to the integrated cellular stress response.


Assuntos
Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Animais , Carbonil Cianeto m-Clorofenil Hidrazona/química , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/química
7.
Int J Biochem Cell Biol ; 65: 91-103, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26024641

RESUMO

Complex I (CI) deficiency is the most common respiratory chain defect representing more than 30% of mitochondrial diseases. CI is an L-shaped multi-subunit complex with a peripheral arm protruding into the mitochondrial matrix and a membrane arm. CI sequentially assembled into main assembly intermediates: the P (pumping), Q (Quinone) and N (NADH dehydrogenase) modules. In this study, we analyzed 11 fibroblast cell lines derived from patients with inherited CI deficiency resulting from mutations in the nuclear or mitochondrial DNA and impacting these different modules. In patient cells carrying a mutation located in the matrix arm of CI, blue native-polyacrylamide gel electrophoresis (BN-PAGE) revealed a significant reduction of fully assembled CI enzyme and an accumulation of intermediates of the N module. In these cell lines with an assembly defect, NADH dehydrogenase activity was partly functional, even though CI was not fully assembled. We further demonstrated that this functional N module was responsible for ROS production through the reduced flavin mononucleotide. Due to the assembly defect, the FMN site was not re-oxidized leading to a significant oxidative stress in cell lines with an assembly defect. These findings not only highlight the relationship between CI assembly and oxidative stress, but also show the suitability of BN-PAGE analysis in evaluating the consequences of CI dysfunction. Moreover, these data suggest that the use of antioxidants may be particularly relevant for patients displaying a CI assembly defect.


Assuntos
Complexo I de Transporte de Elétrons/deficiência , Doenças Mitocondriais/metabolismo , Estresse Oxidativo/fisiologia , Trifosfato de Adenosina/metabolismo , Estudos de Casos e Controles , Células Cultivadas , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Fibroblastos/metabolismo , Humanos , Doenças Mitocondriais/genética , Modelos Moleculares , Mutação , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA