Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Radiat Prot Dosimetry ; 198(20): 1585-1597, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36321327

RESUMO

The International Commission on Radiological Protection (ICRP) 118th recommendation significantly reduced the threshold dose for cataract development from 8 to 0.5 Gy. Equivalent dose limits for the crystalline lenses of radiation workers are being reviewed for individual countries. Interventional radiology (IR) procedures are less invasive than surgery and have become widespread; however, there are concerns about exposure not only to patients but also to staff, including operators. Therefore, in this study, we used a human phantom to measure the near-lens dose of the operators (cardiologists, neurosurgeons and radiologists) and estimated the operator's lens dose for every major procedure in each clinical department; this was found to vary. Owing to the different imaging and fluoroscopy conditions of each department, and the varying ratio of fluoroscopy to radiography, it is necessary to measure the lens dose for each condition, as in this study. In addition, this study explains the differences between the protective effect of various safety equipment and the appropriate use of protective plates; it can contribute to the reduction of lens doses for operators.

2.
J Radiat Res ; 62(4): 735-739, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34036327

RESUMO

Cumulative dose effects, which are one of the main causes of errors that occur when an implantable cardiac pacemaker (ICP) is irradiated with ionizing radiation, induce permanent failure in ICPs. Although flattening filter free (FFF) beams, which are often used in stereotactic radiotherapy, are known to have different characteristics from conventional (with flattening filter [WFF]) beams, the cumulative dose effects on ICPs with FFF beams have been under-investigated. This study investigates ICP failure induced by cumulative dose effects of FFF beams. When the ICP placed in the center of the irradiation field was irradiated with 10 MV-FFF at 24 Gy/min, the cumulative dose at which failure occurred was evaluated on the basis of the failure criteria associated with high cumulative dose as described in the American Association of Physicists in Medicine Task Group 203. The ICP failures such as a mild battery depletion at a cumulative dose of 10 Gy, pacing-output voltage change >25% at a cumulative dose of 122 Gy, and the loss of telemetry capability at cumulative dose 134 Gy were induced by cumulative dose effects. The cumulative doses by which the cumulative dose effects of FFF beams induced ICP failure were not very different from those reported in previous studies with WFF beams. Therefore, radiotherapy with FFF beams (and WFF beams) for patients with ICP requires appropriate management for minimizing the cumulative dose effects.


Assuntos
Marca-Passo Artificial , Próteses e Implantes , Relação Dose-Resposta à Radiação , Impedância Elétrica
3.
In Vivo ; 34(5): 2401-2406, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32871765

RESUMO

BACKGROUND/AIM: Because current image-guided radiotherapy systems can only correct six axes, it is impossible to correct the twisting of cervical vertebrae. The purpose of this study was to clarify the relationship between cervical vertebrae twisting and cranial angle. MATERIALS AND METHODS: Nineteen patients who underwent intensity-modulated radiation therapy were retrospectively reviewed. Twisting of cervical vertebrae was analysed using planning computed tomography (CT) and megavoltage CT images for image-guided radiotherapy. RESULTS: Although the cranial angle during planning CT was not strongly correlated with twisting (correlation coefficient <0.7), when the patients were divided into two groups by cranial angle, the twisting of the small-angle group was significantly reduced. Specifically, cranial angles of <25° significantly and efficiently reduced the twisting of the upper cervical vertebra compared with those of the other groups. CONCLUSION: Twisting of the upper cervical vertebrae is reduced by using a cranial angle of <25° during planning CT.


Assuntos
Neoplasias de Cabeça e Pescoço , Radioterapia Guiada por Imagem , Vértebras Cervicais/diagnóstico por imagem , Cabeça , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Pescoço , Estudos Retrospectivos
4.
Cureus ; 12(6): e8690, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32699688

RESUMO

Background Since the optic pathways are the most vulnerable to radiation, the treatment of skull base tumors involving them is challenging. In this study simulation plans by multi-beam (MB) intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT), both with the flattened beam (FB) and flattening-filter-free beam (FFF), were compared in terms of covering of the target and sparing of the optic pathways. Materials and methods Treatment planning was simulated by MB-IMRT with FB and FFF and by 2-rotational VMAT with FB and FFF in three cases of skull base meningioma [volume of the planned target volume (PTV; PTV margin=2 mm except for overlapping area with optic pathways or brainstem): 8.6 ml, 34.6 ml, and 55.3 ml respectively], which were treated previously by multi-fractionated MB-IMRT [45 Gy/18 fx. (fraction) with 7-, 6-, and 5-beam] using a conventional Novalis (BrainLAB, Tokyo, Japan) planned by iPlan (BrainLAB, Tokyo, Japan). In all three cases, the optic pathways were adjacent to the lesion. The reference CT with contouring data set of target volumes [gross tumor volume (GTV) and PTV] and OARs (organs at risk) was transferred from iPlan to Eclipse (Varian Medical Systems, Tokyo, Japan). In this study, hypofractionated radiation therapy by 30 Gy/5 fx. was designed; 95% dose (28.5 Gy/5 fx.) was prescribed to D95 (dose to 95% volume of PTV). Conformity index (CI), homogeneity index (HI, D5/D95), D[0.1 ml] (dose to 0.1 ml) for optic pathways, and D[1 ml] for brainstem and eyes, and V[20 Gy] (volume delivered with 20 Gy or more/5 fx.) of the whole brain were evaluated. Results The indices did not differ between FB and FFF, in either MB-IMRT or VMAT. Between MB-IMRT and VMAT, the indices were similar. The mean dose of PTV and HI was a little larger with MB-IMRT than with VMAT. D[0.1 ml] of the optic pathways and D[1 ml] of the ipsilateral eye were smaller with VMAT in all three cases. D[1 ml] of the brainstem was smaller with VMAT in two cases, though it was similar in one case. Conclusion Based on our findings, VMAT with FFF might be the optimal method to treat cases of skull base meningioma involving optic pathways. However, further studies involving more cases are required to arrive at a conclusive verdict.

5.
J Radiat Res ; 61(3): 419-425, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32253430

RESUMO

Direct irradiation may cause malfunctioning of cardiac implantable electronic devices (CIEDs). Therefore, a treatment plan that does not involve direct irradiation of CIEDs should be formulated. However, CIEDs may be directly exposed to radiation because of the sudden intrafractional movement of the patient. The probability of CIED malfunction reportedly depends on the dose rate; however, reports are only limited to dose rates ≤8 Gy/min. The purpose of this study was to investigate the effect of X-ray dose rates >8 Gy/min on CIED function. Four CIEDs were placed at the center of the radiation field and irradiated using 6 MV X-ray with flattening filter free (6 MV FFF) and 10 MV X-ray with flattening filter free (10 MV FFF). The dose rate was 4-14 Gy/min for the 6 MV FFF and 4-24 Gy/min for 10 MV FFF beams. CIED operation was evaluated with an electrocardiogram during each irradiation. Three CIEDs malfunctioned in the 6 MV FFF condition, and all four CIEDs malfunctioned in the 10 MV FFF condition, when the dose rate was >8 Gy/min. Pacing inhibition was the malfunction observed in all four CIEDs. Malfunction occurred simultaneously along with irradiation and simultaneously returned to normal function on stopping the irradiation. An X-ray dose rate >8 Gy/min caused a temporary malfunction due to interference. Therefore, clinicians should be aware of the risk of malfunction and manage patient movement when an X-ray dose rate >8 Gy/min is used for patients with CIEDs.


Assuntos
Desfibriladores Implantáveis , Coração/efeitos da radiação , Marca-Passo Artificial , Dosagem Radioterapêutica , Raios X/efeitos adversos , Relação Dose-Resposta à Radiação , Condutividade Elétrica , Eletrocardiografia , Eletrônica , Desenho de Equipamento , Humanos , Radiografia , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada
6.
Radiol Phys Technol ; 11(4): 467-472, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30255438

RESUMO

Tumor locations are commonly delineated by referring to magnetic resonance (MR) images. However, MR images have geometric distortions that cannot be completely corrected. This study aimed to investigate quantitatively uncorrectable error [residual error (RE)] with the use of an open-source plugin for scientific image analysis. The RE values were calculated by Fiji, which was enhanced by Image J image processing software. The results obtained with the open-source plugin for scientific image analysis agreed with the results obtained with the commercially available software. Obtaining detailed geometric distortion data for each facility and device could facilitate safe treatment because the homogeneous magnetic field in MR imaging varies across devices and over time. Therefore, using an open-source plugin for scientific image analysis may be an accurate and effective technique for evaluating the RE of MR imaging systems.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Software , Algoritmos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X
7.
Cureus ; 8(11): e882, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28003946

RESUMO

OBJECTIVE: The efficacy of stereotactic radiosurgery (SRS) using Gamma Knife (GK) (Elekta, Tokyo) is well known. Recently, Automatic Brain Metastases Planning (ABMP) Element (BrainLAB, Tokyo) for a LINAC-based radiation system was commercially released. It covers multiple off-isocenter targets simultaneously inside a multi-leaf collimator field and enables SRS / stereotactic radiotherapy (SRT) with a single group of LINAC-based dynamic conformal multi-arcs (DCA) for multiple brain metastases. In this study, dose planning of ABMP (ABMP-single isocenter DCA (ABMP-SIDCA)) for SRS of small multiple brain metastases was evaluated in comparison with those of conventional multi-isocenter DCA (MIDCA-SRS) (iPlan, BrainLAB, Tokyo) and GK-SRS (GKRS). METHODS: Simulation planning was performed with ABMP-SIDCA and GKRS in the two cases of multiple small brain metastases (nine tumors in both), which had been originally treated with iPlan-MIDCA. First, a dosimetric comparison was done between ABMP-SIDCA and iPlan-MIDCA in the same setting of planning target volume (PTV) margin and D95 (dose covering 95% of PTV volume). Second, dosimetry of GKRS with a margin dose of 20 Gy was compared with that of ABMP-SIDCA in the setting of PTV margin of 0, 1 mm, and 2 mm, and D95=100% dose (20 Gy). RESULTS: First, the maximum dose of PTV and minimum dose of gross tumor volume (GTV) were significantly greater in ABMP-SIDCA than in iPlan-MIDCA. Conformity index (CI, 1/Paddick's CI) and gradient index (GI, V (half of prescription dose) / V (prescription dose)) in ABMP-SIDCA were comparable with those of iPlan-MIDCA. Second, PIV (prescription isodose volume) of GKRS was consistent with that of 1 mm margin - ABMP-SIDCA plan in Case 1 and that of no-margin ABMP-SIDCA plan in Case 2. Considering the dose gradient, the mean of V (half of prescription dose) of ABMP-SIDCA was not broad, comparable to GKRS, in either Case 1 or 2. CONCLUSIONS: The conformity and dose gradient with ABMP-SIDCA were as good as those of conventional MIDCA for each lesion. If the conditions of the LINAC system permit a minimal PTV margin (1 mm or less), ABMP-SIDCA might provide excellent dose fall-off comparable with that of GKRS thereby enabling a short treatment time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA