Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(11): eadj6406, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489355

RESUMO

There is a compelling need to find drugs active against Mycobacterium tuberculosis (Mtb). 4'-Phosphopantetheinyl transferase (PptT) is an essential enzyme in Mtb that has attracted interest as a potential drug target. We optimized a PptT assay, used it to screen 422,740 compounds, and identified raltitrexed, an antineoplastic antimetabolite, as the most potent PptT inhibitor yet reported. While trying unsuccessfully to improve raltitrexed's ability to kill Mtb and remove its ability to kill human cells, we learned three lessons that may help others developing antibiotics. First, binding of raltitrexed substantially changed the configuration of the PptT active site, complicating molecular modeling of analogs based on the unliganded crystal structure or the structure of cocrystals with inhibitors of another class. Second, minor changes in the raltitrexed molecule changed its target in Mtb from PptT to dihydrofolate reductase (DHFR). Third, the structure-activity relationship for over 800 raltitrexed analogs only became interpretable when we quantified and characterized the compounds' intrabacterial accumulation and transformation.


Assuntos
Mycobacterium tuberculosis , Neoplasias , Quinazolinas , Tiofenos , Transferases (Outros Grupos de Fosfato Substituídos) , Humanos , Mycobacterium tuberculosis/metabolismo , Timidilato Sintase/metabolismo , Proteínas de Bactérias/metabolismo
2.
ACS Infect Dis ; 8(10): 2019-2027, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36048501

RESUMO

ATP provides energy in the biosynthesis of cellular metabolites as well as regulates protein functions through phosphorylation. Many ATP-dependent enzymes are antibacterial and anticancer targets including human kinases acted on by most of the successful drugs. In search of new chemotherapeutics for tuberculosis (TB), we screened repurposing compounds against the essential glutamine synthase (GlnA1) of Mycobacterium tuberculosis (Mtb) and identified linsitinib, a clinical-stage drug originally targeting kinase IGF1R/IR as a potent GlnA1 inhibitor. Linsitinib has direct antimycobacterial activity. Biochemical, molecular modeling, and target engagement analyses revealed the inhibition is ATP-competitive and specific in Mtb. Linsitinib also improves autophagy flux in both Mtb-infected and uninfected THP1 macrophages, as demonstrated by the decreased p-mTOR and p62 and the increased lipid-bound LC3B-II and autophagosome forming puncta. Linsitinib-mediated autophagy reduces intracellular growth of wild-type and isoniazid-resistant Mtb alone or in combination with bedaquiline. We have demonstrated that an IGF-IR/IR inhibitor can potentially be used to treat TB. Our study reinforces the concept of targeting ATP-dependent enzymes for novel anti-TB therapy.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Trifosfato de Adenosina/metabolismo , Antibacterianos/metabolismo , Glutamina/metabolismo , Humanos , Imidazóis , Isoniazida , Lipídeos , Mycobacterium tuberculosis/metabolismo , Inibidores de Proteínas Quinases , Pirazinas , Receptor IGF Tipo 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
3.
Antimicrob Agents Chemother ; 59(4): 2256-64, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25645825

RESUMO

Efficient iron acquisition is crucial for the pathogenesis of Mycobacterium tuberculosis. Mycobacterial iron uptake and metabolism are therefore attractive targets for antitubercular drug development. Resistance mutations against a novel pyrazolopyrimidinone compound (PZP) that is active against M. tuberculosis have been identified within the gene cluster encoding the ESX-3 type VII secretion system. ESX-3 is required for mycobacterial iron acquisition through the mycobactin siderophore pathway, which could indicate that PZP restricts mycobacterial growth by targeting ESX-3 and thus iron uptake. Surprisingly, we show that ESX-3 is not the cellular target of the compound. We demonstrate that PZP indeed targets iron metabolism; however, we found that instead of inhibiting uptake of iron, PZP acts as an iron chelator, and we present evidence that the compound restricts mycobacterial growth by chelating intrabacterial iron. Thus, we have unraveled the unexpected mechanism of a novel antimycobacterial compound.


Assuntos
Antibacterianos/farmacologia , Quelantes de Ferro/farmacologia , Mycobacterium smegmatis/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinonas/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Ferrozina/metabolismo , Ferro/metabolismo , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/genética , Oxazóis/metabolismo , Pirazóis/síntese química , Pirimidinonas/síntese química , RNA Bacteriano/metabolismo , Sideróforos/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-25635061

RESUMO

The recent accelerated approval for use in extensively drug-resistant and multidrug-resistant-tuberculosis (MDR-TB) of two first-in-class TB drugs, bedaquiline and delamanid, has reinvigorated the TB drug discovery and development field. However, although several promising clinical development programs are ongoing to evaluate new TB drugs and regimens, the number of novel series represented is few. The global early-development pipeline is also woefully thin. To have a chance of achieving the goal of better, shorter, safer TB drug regimens with utility against drug-sensitive and drug-resistant disease, a robust and diverse global TB drug discovery pipeline is key, including innovative approaches that make use of recently acquired knowledge on the biology of TB. Fortunately, drug discovery for TB has resurged in recent years, generating compounds with varying potential for progression into developable leads. In parallel, advances have been made in understanding TB pathogenesis. It is now possible to apply the lessons learned from recent TB hit generation efforts and newly validated TB drug targets to generate the next wave of TB drug leads. Use of currently underexploited sources of chemical matter and lead-optimization strategies may also improve the efficiency of future TB drug discovery. Novel TB drug regimens with shorter treatment durations must target all subpopulations of Mycobacterium tuberculosis existing in an infection, including those responsible for the protracted TB treatment duration. This review summarizes the current TB drug development pipeline and proposes strategies for generating improved hits and leads in the discovery phase that could help achieve this goal.


Assuntos
Antituberculosos/uso terapêutico , Descoberta de Drogas , Tuberculose/tratamento farmacológico , Trifosfato de Adenosina/biossíntese , Proteínas de Bactérias/antagonistas & inibidores , Produtos Biológicos/uso terapêutico , Carbono/metabolismo , Colesterol/metabolismo , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Metabolismo Energético/fisiologia , Humanos , Ferro/metabolismo , Óxido Nítrico/metabolismo , Peptídeo Hidrolases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Mol Biosyst ; 6(11): 2316-2324, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20835433

RESUMO

There is an urgent need for new drugs against tuberculosis which annually claims 1.7-1.8 million lives. One approach to identify potential leads is to screen in vitro small molecules against Mycobacterium tuberculosis (Mtb). Until recently there was no central repository to collect information on compounds screened. Consequently, it has been difficult to analyze molecular properties of compounds that inhibit the growth of Mtb in vitro. We have collected data from publically available sources on over 300 000 small molecules deposited in the Collaborative Drug Discovery TB Database. A cheminformatics analysis on these compounds indicates that inhibitors of the growth of Mtb have statistically higher mean logP, rule of 5 alerts, while also having lower HBD count, atom count and lower PSA (ChemAxon descriptors), compared to compounds that are classed as inactive. Additionally, Bayesian models for selecting Mtb active compounds were evaluated with over 100 000 compounds and, they demonstrated 10 fold enrichment over random for the top ranked 600 compounds. This represents a promising approach for finding compounds active against Mtb in whole cells screened under the same in vitro conditions. Various sets of Mtb hit molecules were also examined by various filtering rules used widely in the pharmaceutical industry to identify compounds with potentially reactive moieties. We found differences between the number of compounds flagged by these rules in Mtb datasets, malaria hits, FDA approved drugs and antibiotics. Combining these approaches may enable selection of compounds with increased probability of inhibition of whole cell Mtb activity.


Assuntos
Antituberculosos/análise , Antituberculosos/farmacologia , Bases de Dados Factuais , Avaliação Pré-Clínica de Medicamentos , Mycobacterium tuberculosis/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/farmacologia , Antituberculosos/química , Teorema de Bayes , Bibliotecas de Moléculas Pequenas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA