Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 18929, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344597

RESUMO

To reveal waning humoral immunity after second dose BNT162b2 vaccinations in a rural Japanese community and determine factors affecting antibody titers. We aimed to report Immunoglobulin G (IgG) antibody against the SARS-CoV-2 spike (S1) protein levels and neutralizing activity in a large scale community based cohort. METHODS: Participants in the observational cross-sectional study received a second dose of vaccination with BNT162b2 (Pfizer/BioNTech) and were not previously infected with COVID-19. Questionnaire-collected data on sex, age, adverse vaccine reactions, and medical history was obtained. RESULTS: Data from 2496 participants revealed that older age groups reached a low antibody titer 90-120 days after the second vaccination. Neutralizing activity decreased with age; 35 (13.3%) of those aged ≥ 80 years had neutralizing activity under the cut-off value. Neutralizing activity > 179 days from the second vaccination was 11.6% compared to that at < 60 days from the second vaccination. Significantly lower IgG antibody titers and neutralizing activity were associated with age, male sex, increased time from second vaccination, smoking, steroids, immunosuppression, and comorbidities. CONCLUSIONS: Antibody titer decreased substantially over time. Susceptible populations, older people, men, smokers, steroid users, immunosuppression users, and people with three or more comorbidities may require a special protection strategy.


Assuntos
COVID-19 , Vacinas , Masculino , Humanos , Idoso , Imunidade Humoral , Estudos Transversais , Vacina BNT162 , Anticorpos Antivirais , Japão , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , Inquéritos e Questionários , Anticorpos Neutralizantes
2.
Cancer Sci ; 113(12): 4350-4362, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36121618

RESUMO

Antibody-mimetic drug conjugate is a novel noncovalent conjugate consisting of an antibody-mimetic recognizing a target molecule on the cancer cell surface and low-molecular-weight payloads that kill the cancer cells. In this study, the efficacy of a photo-activating antibody-mimetic drug conjugate targeting HER2-expressing tumors was evaluated in mice, by using the affibody that recognize HER2 (ZHER2:342 ) as a target molecule and an axially substituted silicon phthalocyanine (a novel potent photo-activating compound) as a payload. The first treatment with the photo-activating antibody-mimetic drug conjugates reduced the size of all HER2-expressing KPL-4 xenograft tumors macroscopically. However, during the observation period, relapsed tumors gradually appeared in approximately 50% of the animals. To evaluate the efficacy of repeated antibody-mimetic drug conjugate treatment, animals with relapsed tumors were treated again with the same regimen. After the second observation period, the mouse tissues were examined histopathologically. Unexpectedly, all relapsed tumors were eradicated, and all animals were diagnosed with pathological complete remission. After the second treatment, skin wounds healed rapidly, and no significant side effects were observed in other organs, except for occasional microscopic granulomatous tissues beneath the serosa of the liver in a few mice. Repeated treatments seemed to be well tolerated. These results indicate the promising efficacy of the repeated photo-activating antibody-mimetic drug conjugate treatment against HER2-expressing tumors.


Assuntos
Imunoconjugados , Humanos , Animais , Camundongos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Receptor ErbB-2/metabolismo , Linhagem Celular Tumoral , Anticorpos
3.
Protein Expr Purif ; 192: 106043, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34973460

RESUMO

Antibody-drug conjugates (ADCs) are a major therapeutic tool for the treatment of advanced cancer. Malignant cells in advanced cancer often display multiple genetic mutations and become resistant to monotherapy. Therefore, a therapeutic regimen that simultaneously targets multiple molecules with multiple payloads is desirable. However, the development of ADCs is hampered by issues in biopharmaceutical manufacturing and the complexity of the conjugation process of low-molecular-weight payloads to biologicals. Here, we report antibody mimetic-drug conjugates (AMDCs) developed by exploiting the non-covalent binding property of payloads based on high-affinity binding of mutated streptavidin and modified iminobiotin. Miniprotein antibodies were fused to a low immunogenic streptavidin variant, which was then expressed in Escherichia coli inclusion bodies, solubilized, and refolded into functional tetramers. The AMDC developed against human epidermal growth factor receptor 2 (HER2) effectively killed cultured cancer cells using bis-iminobiotin conjugated to photo-activating silicon phthalocyanine. The HER2-targeting AMDC was also effective in vivo against a mouse KPL-4 xenograft model. This AMDC platform provides rapid, stable, and high-yield therapeutics against multiple targets.


Assuntos
Escherichia coli/metabolismo , Expressão Gênica , Imunoconjugados/genética , Animais , Biotina/administração & dosagem , Biotina/análogos & derivados , Biotina/química , Biotina/genética , Biotina/imunologia , Linhagem Celular Tumoral , Clonagem Molecular , Escherichia coli/genética , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/química , Imunoconjugados/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Dobramento de Proteína , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Estreptavidina/administração & dosagem , Estreptavidina/química , Estreptavidina/genética , Estreptavidina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA