Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Alzheimers Res Ther ; 16(1): 70, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575959

RESUMO

BACKGROUND: Cathepsin D (CatD) is a lysosomal protease that degrades both the amyloid-ß protein (Aß) and the microtubule-associated protein, tau, which accumulate pathognomonically in Alzheimer disease (AD), but few studies have examined the role of CatD in the development of Aß pathology and tauopathy in vivo. METHODS: CatD knockout (KO) mice were crossed to human amyloid precursor protein (hAPP) transgenic mice, and amyloid burden was quantified by ELISA and immunohistochemistry (IHC). Tauopathy in CatD-KO mice, as initially suggested by Gallyas silver staining, was further characterized by extensive IHC and biochemical analyses. Controls included human tau transgenic mice (JNPL3) and another mouse model of a disease (Krabbe A) characterized by pronounced lysosomal dysfunction. Additional experiments examined the effects of CatD inhibition on tau catabolism in vitro and in cultured neuroblastoma cells with inducible expression of human tau. RESULTS: Deletion of CatD in hAPP transgenic mice triggers large increases in cerebral Aß, manifesting as intense, exclusively intracellular aggregates; extracellular Aß deposition, by contrast, is neither triggered by CatD deletion, nor affected in older, haploinsufficient mice. Unexpectedly, CatD-KO mice were found to develop prominent tauopathy by just ∼ 3 weeks of age, accumulating sarkosyl-insoluble, hyperphosphorylated tau exceeding the pathology present in aged JNPL3 mice. CatD-KO mice exhibit pronounced perinuclear Gallyas silver staining reminiscent of mature neurofibrillary tangles in human AD, together with widespread phospho-tau immunoreactivity. Striking increases in sarkosyl-insoluble phospho-tau (∼ 1250%) are present in CatD-KO mice but notably absent from Krabbe A mice collected at an identical antemortem interval. In vitro and in cultured cells, we show that tau catabolism is slowed by blockade of CatD proteolytic activity, including via competitive inhibition by Aß42. CONCLUSIONS: Our findings support a major role for CatD in the proteostasis of both Aß and tau in vivo. To our knowledge, the CatD-KO mouse line is the only model to develop detectable Aß accumulation and profound tauopathy in the absence of overexpression of hAPP or human tau with disease-associated mutations. Given that tauopathy emerges from disruption of CatD, which can itself be potently inhibited by Aß42, our findings suggest that impaired CatD activity may represent a key mechanism linking amyloid accumulation and tauopathy in AD.


Assuntos
Doença de Alzheimer , Tauopatias , Idoso , Animais , Humanos , Camundongos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Catepsina D , Modelos Animais de Doenças , Camundongos Knockout , Camundongos Transgênicos , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/genética , Tauopatias/metabolismo
2.
Res Sq ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961253

RESUMO

Background: Cathepsin D (CatD) is a lysosomal protease that degrades both the amyloid-ß protein (Aß) and the microtubule-associated protein, tau, which accumulate pathognomonically in Alzheimer disease (AD), but few studies have examined the role of CatD in the development of Aß pathology and tauopathy in vivo. Methods: CatD knockout (KO) mice were crossed to human amyloid precursor protein (hAPP) transgenic mice, and amyloid burden was quantified by ELISA and immunohistochemistry (IHC). Tauopathy in CatD-KO mice, as initially suggested by Gallyas silver staining, was further characterized by extensive IHC and biochemical analyses. Controls included human tau transgenic mice (JNPL3) and another mouse model characterized by pronounced lysosomal dysfunction (Krabbe A). Additional experiments examined the effects of CatD inhibition on tau catabolism in vitro and in cultured neuroblastoma cells with inducible expression of human tau. Results: Deletion of CatD in hAPP transgenic mice triggers large increases in cerebral Aß, manifesting as intense, exclusively intracellular aggregates; extracellular Aß deposition, by contrast, is neither triggered by CatD deletion, nor affected in older, haploinsufficient mice. Unexpectedly, CatDKO mice were found to develop prominent tauopathy by just ~ 3 weeks of age, accumulating sarkosyl-insoluble, hyperphosphorylated tau exceeding the pathology in aged JNPL3 mice. CatDKO mice exhibit pronounced perinuclear Gallyas silver staining reminiscent of mature neurofibrillary tangles in human AD, together with widespread phospho-tau immunoreactivity. Striking increases in sarkosyl-insoluble phospho-tau (~ 1250%) are present in CatD-KO mice, but notably absent from Krabbe A mice collected at an identical antemortem interval. In vitro and in cultured cells, we show that tau catabolism is slowed by blockade of CatD proteolytic activity, including via competitive inhibition by Aß42. Conclusions: Our findings support a major role for CatD in the proteostasis of both Aß and tau in vivo. To our knowledge, CatD-KO mice are the only model to develop detectable Aß acumulation and profound tauopathy in the absence of overexpression of hAPP or human tau with disease-associated mutations. Given that tauopathy emerges from disruption of CatD, which can itself be potently inhibited by Aß42, our findings suggest that impaired CatD activity may represent a key mechanism linking amyloid accumulation and tauopathy in AD.

3.
Mol Neurodegener ; 7: 46, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22986058

RESUMO

BACKGROUND: Proteases that degrade the amyloid ß-protein (Aß) have emerged as key players in the etiology and potential treatment of Alzheimer's disease (AD), but it is unlikely that all such proteases have been identified. To discover new Aß-degrading proteases (AßDPs), we conducted an unbiased, genome-scale, functional cDNA screen designed to identify proteases capable of lowering net Aß levels produced by cells, which were subsequently characterized for Aß-degrading activity using an array of downstream assays. RESULTS: The top hit emerging from the screen was ß-site amyloid precursor protein-cleaving enzyme 2 (BACE2), a rather unexpected finding given the well-established role of its close homolog, BACE1, in the production of Aß. BACE2 is known to be capable of lowering Aß levels via non-amyloidogenic processing of APP. However, in vitro, BACE2 was also found to be a particularly avid AßDP, with a catalytic efficiency exceeding all known AßDPs except insulin-degrading enzyme (IDE). BACE1 was also found to degrade Aß, albeit ~150-fold less efficiently than BACE2. Aß is cleaved by BACE2 at three peptide bonds-Phe19-Phe20, Phe20-Ala21, and Leu34-Met35--with the latter cleavage site being the initial and principal one. BACE2 overexpression in cultured cells was found to lower net Aß levels to a greater extent than multiple, well-established AßDPs, including neprilysin (NEP) and endothelin-converting enzyme-1 (ECE1), while showing comparable effectiveness to IDE. CONCLUSIONS: This study identifies a new functional role for BACE2 as a potent AßDP. Based on its high catalytic efficiency, its ability to degrade Aß intracellularly, and other characteristics, BACE2 represents a particulary strong therapeutic candidate for the treatment or prevention of AD.


Assuntos
Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Doença de Alzheimer/genética , Células Cultivadas , Enzimas Conversoras de Endotelina , Humanos , Insulisina/metabolismo , Metaloendopeptidases/metabolismo , Neprilisina/metabolismo
4.
J Neurosci ; 30(16): 5489-97, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20410102

RESUMO

Globoid cell leukodystrophy (GLD) (Krabbe disease) is an autosomal recessive, degenerative, lysosomal storage disease caused by a severe loss of galactocerebrosidase (GALC) enzymatic activity. Of the >70 disease-causing mutations in the GALC gene, most are located outside of the catalytic domain of the enzyme. To determine how GALC mutations impair enzymatic activity, we investigated the impact of multiple disease-causing mutations on GALC processing, localization, and enzymatic activity. Studies in mammalian cells revealed dramatic decreases in GALC activity and a lack of appropriate protein processing into an N-terminal GALC fragment for each of the mutants examined. Consistent with this, we observed significantly less GALC localized to the lysosome and impairment in either the secretion or reuptake of mutant GALC. Notably, the D528N mutation was found to induce hyperglycosylation and protein misfolding. Reversal of these conditions resulted in an increase in proper processing and GALC activity, suggesting that glycosylation may play a critical role in the disease process in patients with this mutation. Recent studies have shown that enzyme inhibitors can sometimes "chaperone" misfolded polypeptides to their appropriate target organelle, bypassing the normal cellular quality control machinery and resulting in enhanced activity. To determine whether this may also work for GLD, we examined the effect of alpha-lobeline, an inhibitor of GALC, on D528N mutant cells. After treatment, GALC activity was significantly increased. This study suggests that mutations in GALC can cause GLD by impairing protein processing and/or folding and that pharmacological chaperones may be potential therapeutic agents for patients carrying certain mutations.


Assuntos
Galactosilceramidase/genética , Leucodistrofia de Células Globoides/tratamento farmacológico , Leucodistrofia de Células Globoides/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/uso terapêutico , Animais , Células COS , Chlorocebus aethiops , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Galactosilceramidase/antagonistas & inibidores , Galactosilceramidase/metabolismo , Humanos , Leucodistrofia de Células Globoides/enzimologia , Chaperonas Moleculares/farmacologia , Mutagênese Sítio-Dirigida , Dobramento de Proteína/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/genética
5.
J Lipid Res ; 51(7): 1704-18, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20173184

RESUMO

LDL mediates transfection with plasmid DNA in a variety of cell types in vitro and in several tissues in vivo in the rat. The transfection capacity of LDL is based on apo B100, as arginine/lysine clusters, suggestive of nucleic acid-binding domains and nuclear localization signal sequences, are present throughout the molecule. Apo E may also contribute to this capacity because of its similarity to the Dengue virus capsid proteins and its ability to bind DNA. Synthetic peptides representing two apo B100 regions with prominent Arg/Lys clusters were shown to bind DNA. Region 1 (0014Lys-Ser0160) shares sequence motifs present in DNA binding domains of Interferon Regulatory Factors and Flaviviridae capsid/core proteins. It also contains a close analog of the B/E receptor ligand of apo E. Region 1 peptides, B1-1 (0014Lys-Glu0054) and B1-2 (0055Leu-Ala0096), mediate transfection of HeLa cells but are cytotoxic. Region 2 (3313Asp-Thr3431), containing the known B/E receptor ligand, shares analog motifs with the human herpesvirus 5 immediate-early transcriptional regulator (UL122) and Flaviviridae NS3 helicases. Region 2 peptides, B2-1 (3313Asp-Glu3355), and B2-2 (3356Gly-Thr3431) are ineffective in cell transfection and are noncytotoxic. These results confirm the role of LDL as a natural transfection vector in vivo, a capacity imparted by the apo B100, and suggest a basis for Flaviviridae cell entry.


Assuntos
Apolipoproteína B-100 , DNA/metabolismo , Lipoproteínas LDL/metabolismo , Transfecção/métodos , Proteínas Virais , Sequência de Aminoácidos , Animais , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Linhagem Celular , DNA/genética , Feminino , Flaviviridae/genética , Flaviviridae/metabolismo , Genes Reporter , Humanos , Lipoproteínas LDL/genética , Dados de Sequência Molecular , Peptídeos/genética , Peptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
Proc Natl Acad Sci U S A ; 102(49): 17551-8, 2005 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-16251272

RESUMO

Rett syndrome (RTT) is a postnatal neurodevelopmental disorder characterized by the loss of acquired motor and language skills, autistic features, and unusual stereotyped movements. RTT is caused by mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MeCP2). Mutations in MECP2 cause a variety of neurodevelopmental disorders including X-linked mental retardation, psychiatric disorders, and some cases of autism. Although MeCP2 was identified as a methylation-dependent transcriptional repressor, transcriptional profiling of RNAs from mice lacking MeCP2 did not reveal significant gene expression changes, suggesting that MeCP2 does not simply function as a global repressor. Changes in expression of a few genes have been observed, but these alterations do not explain the full spectrum of Rett-like phenotypes, raising the possibility that additional MeCP2 functions play a role in pathogenesis. In this study, we show that MeCP2 interacts with the RNA-binding protein Y box-binding protein 1 and regulates splicing of reporter minigenes. Importantly, we found aberrant alternative splicing patterns in a mouse model of RTT. Thus, we uncovered a previously uncharacterized function of MeCP2 that involves regulation of splicing, in addition to its role as a transcriptional repressor.


Assuntos
Metilação de DNA , Proteína 2 de Ligação a Metil-CpG/metabolismo , Splicing de RNA/genética , Transcrição Gênica/genética , Animais , Linhagem Celular Tumoral , Éxons/genética , Perfilação da Expressão Gênica , Genes Reporter/genética , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Modelos Genéticos , Ligação Proteica , RNA/genética , Síndrome de Rett/genética
7.
Gastroenterology ; 123(1): 345-51, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12105862

RESUMO

BACKGROUND & AIMS: Liver development, regeneration, and oncogenesis involve signaling events mediated by a number of proteins, such as ras and the related small guanosine triphosphatases. Many of these signaling proteins carry unique CAAX motifs, which are processed by prenylcysteine carboxylmethyltransferase (PCCMT), among several other enzymes. We investigated the function of Pccmt during mouse liver development to better understand the embryonic lethality of the null mutation. METHODS: Generation of Pccmt-null mice by embryonic stem cell technology, molecular and histologic analysis of Pccmt-null embryos, and foregut endoderm cultures. RESULTS: Pccmt-null embryos die in utero with severe anemia and extensive apoptosis at embryonic day 10.5. We show that deletion of Pccmt leads to a dramatic delay in albumin induction, an early and definitive marker for hepatocyte development. In tissue explant cultures supplemented with fibroblast growth factor (FGF), albumin induction remained impaired. We found that hepatocyte precursors in Pccmt-null embryos failed to invade the septum transversum, resulting in liver agenesis. CONCLUSIONS: PCCMT is essential for several stages of hepatic induction, consistent with its role in modifying proteins required to transduce signals, such as FGF, that have been shown to promote liver specification and early growth.


Assuntos
Fígado/embriologia , Proteínas Metiltransferases/fisiologia , Anemia/complicações , Anemia/embriologia , Animais , Apoptose , Senescência Celular/fisiologia , Técnicas de Cultura , Embrião de Mamíferos/fisiologia , Desenvolvimento Embrionário e Fetal/fisiologia , Feminino , Morte Fetal/etiologia , Fatores de Crescimento de Fibroblastos/farmacologia , Hepatócitos/fisiologia , Fígado/anormalidades , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout/genética , Proteínas Metiltransferases/genética , Albumina Sérica/metabolismo , Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA