Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(28): 34075-34086, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37411032

RESUMO

Membrane gas separation provides a multitude of benefits over alternative separation techniques, especially in terms of energy efficiency and environmental sustainability. While polymeric membranes have been extensively investigated for gas separations, their self-healing capabilities have often been neglected. In this work, we have developed innovative self-healing amphiphilic copolymers by strategically incorporating three functional segments: n-butyl acrylate (BA), N-(hydroxymethyl)acrylamide (NMA), and methacrylic acid (MAA). Utilizing these three functional components, we have synthesized two distinct amphiphilic copolymers, namely, APNMA (PBAx-co-PNMAy) and APMAA (PBAx-co-PMAAy). These copolymers have been meticulously designed for gas separation applications. During the creation of these amphiphilic copolymers, BA and NMA segments were selected due to their vital role in the ease of tuning mechanical and self-healing properties. The functional groups (-OH and -NH) present on the NMA segment interact with CO2 through hydrogen bonding, thereby boosting CO2/N2 separation and achieving superior selectivity. We assessed the self-healing potential of these amphiphilic copolymer membranes using two distinct strategies: conventional and vacuum-assisted self-healing. In the vacuum-assisted approach, a robust vacuum pump generates a suction force, leading to the formation of a cone-like shape in the membrane. This formation allows common fracture sites to adhere and trigger the self-healing process. As a result, APNMA maintains its high gas permeability and CO2/N2 selectivity even after the vacuum-assisted self-healing operation. The ideal CO2/N2 selectivity of the APNMA membrane aligns closely with the commercially available PEBAX-1657 membrane (17.54 vs 20.09). Notably, the gas selectivity of the APNMA membrane can be readily restored after damage, in contrast to the PEBAX-1657 membrane, which loses its selectivity upon damage.

2.
Commun Chem ; 6(1): 118, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301865

RESUMO

Structural flexibility is a critical issue that limits the application of metal-organic framework (MOF) membranes for gas separation. Herein we propose a mixed-linker approach to suppress the structural flexibility of the CAU-10-based (CAU = Christian-Albrechts-University) membranes. Specifically, pure CAU-10-PDC membranes display high separation performance but at the same time are highly unstable for the separation of CO2/CH4. A partial substitution (30 mol.%) of the linker PDC with BDC significantly improves its stability. Such an approach also allows for decreasing the aperture size of MOFs. The optimized CAU-10-PDC-H (70/30) membrane possesses a high separation performance for CO2/CH4 (separation factor of 74.2 and CO2 permeability of 1,111.1 Barrer under 2 bar of feed pressure at 35°C). A combination of in situ characterization with X-ray diffraction (XRD) and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, as well as periodic density functional theory (DFT) calculations, unveils the origin of the mixed-linker approach to enhancing the structural stability of the mixed-linker CAU-10-based membranes during the gas permeation tests.

3.
Langmuir ; 39(8): 2871-2880, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802624

RESUMO

Metal-organic frameworks (MOFs) are promising candidates for membrane gas separation. MOF-based membranes include pure MOF membranes and MOF-based mixed matrix membranes (MMMs). This Perspective discusses the challenges for the next stage of the development of MOF-based membranes based on research conducted in the past decade. We focused on three major issues associated with pure MOF membranes. First, some MOF compounds have been overstudied, despite the availability of numerous MOFs. Second, gas adsorption and diffusion in MOFs are often independently investigated. The correlation between adsorption and diffusion has seldom been discussed. Third, we identify the importance of characterizing the gas distribution in MOFs to understand the structure-property relationships for gas adsorption and diffusion in MOF membranes. For MOF-based MMMs, engineering the MOF-polymer interface is essential for achieving the desired separation performance. Various approaches to modify the MOF surface or polymer molecular structure have been proposed to improve the MOF-polymer interface. Herein, we present defect engineering as a facile and efficient approach for engineering the MOF-polymer interfacial morphology and its extended application for various gas separations.

4.
Langmuir ; 38(31): 9441-9453, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35881074

RESUMO

For more than a decade, researchers have been developing metal-organic frameworks (MOFs) in the form of pure MOF membranes as well as MOF-containing mixed-matrix membranes. MOF membranes have been used for H2/CO2 or C3H6/C3H8 separation, but relatively few MOF membranes enable the high-performance separation of CO2/N2, CO2/CH4, or N2/CH4. This article describes the use of in situ XRD analysis and molecular simulation to elucidate gas transport within MOFs and derivative membranes at the molecular level. In a review of recent studies by the authors and other research groups, this article examines the flexibility of MOFs initiated by activation, gas adsorption, and aging effects during gas permeation. This article also discusses the application of XRD analysis in conjunction with computational methods to investigate the CO2-MOF Coulombic interaction and its effects on CO2 separation. Note that this combined analysis approach is also useful in studying the effects of linker rotation on N2/CH4 separation. This article also examines the use of computational tools in identifying new MOFs for gas separation and, more importantly, in elaborating the relationship between the structure of MOFs and their corresponding gas transport properties.

5.
ACS Appl Mater Interfaces ; 13(35): 41904-41915, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34448575

RESUMO

Metal-organic frameworks (MOFs) are considered as promising materials for membrane gas separations. Structural defects within a pure MOF membrane can considerably reduce its selectivity and possibly result in a nonselective separation. This work proposes a solution-phase synthesis with dielectric barrier discharge (DBD) plasma to suppress the formation of defects in the pure MOF membrane of CPO-8-BPY. Through comprehensive solid-state characterization with XRD, SEM, XPS, solid-state NMR, and XAFS, DBD plasma is demonstrated to facilitate deprotonation in the H2aip linker, which leads to a smaller and more uniform particle size of CPO-8-BPY. The narrow grain size distribution effectively reduces the pinhole-type defects in the pure CPO-8-BPY membrane and endows it with good ideal selectivity for H2/CH4 (αH2/CH4 = 28.2) and N2/CH4 (αN2/CH4 = 5.4). The selectivity for H2/CH4 of this membrane from a mixed-gas permeation test is found to be 15.4. Molecular simulations are also performed to gain insights into the gas transport properties of this MOF. The results suggest that ligand rotation plays an important role in CPO-8-BPY when being applied to the membrane separation of N2/CH4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA