Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Reprod ; 39(4): 658-673, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38335261

RESUMO

STUDY QUESTION: What is the significance and mechanism of human seminal plasma extracellular vesicles (EVs) in regulating human sperm functions? SUMMARY ANSWER: EV increases the intracellular Ca2+ concentrations [Ca2+]i via extracellular Ca2+ influx by activating CatSper channels, and subsequently modulate human sperm motility, especially hyperactivated motility, which is attributed to both protein and non-protein components in EV. WHAT IS KNOWN ALREADY: EVs are functional regulators of human sperm function, and EV cargoes from normal and asthenozoospermic seminal plasma are different. Pre-fusion of EV with sperm in the acidic and non-physiological sucrose buffer solution could elevate [Ca2+]i in human sperm. CatSper, a principle Ca2+ channel in human sperm, is responsible for the [Ca2+]i regulation when sperm respond to diverse extracellular stimuli. However, the role of CatSper in EV-evoked calcium signaling and its potential physiological significance remain unclear. STUDY DESIGN, SIZE, DURATION: EV isolated from the seminal plasma of normal and asthenozoospermic semen were utilized to investigate the mechanism by which EV regulates calcium signal in human sperm, including the involvement of CatSper and the responsible cargoes in EV. In addition, the clinical application potential of EV and EV protein-derived peptides were also evaluated. This is a laboratory study that went on for more than 5 years and involved more than 200 separate experiments. PARTICIPANTS/MATERIALS, SETTING, METHODS: Semen donors were recruited in accordance with the Institutional Ethics Committee on human subjects of the Affiliated Hospital of Nantong University and Jiangxi Maternal and Child Health Hospital. The Flow NanoAnalyzer, western blotting, and transmission electron microscope were used to systematically characterize seminal plasma EV. Sperm [Ca2+]i responses were examined by fluorimetric measurement. The whole-cell patch-clamp technique was performed to record CatSper currents. Sperm motility parameters were assessed by computer-assisted sperm analysis. Sperm hyperactivation was also evaluated by examining their penetration ability in viscous methylcellulose media. Protein and non-protein components in EV were analyzed by liquid chromatography-mass spectrum. The levels of prostaglandins, reactive oxygen species, malonaldehyde, and DNA integrity were detected by commercial kits. MAIN RESULTS AND THE ROLE OF CHANCE: EV increased [Ca2+]i via an extracellular Ca2+ influx, which could be suppressed by a CatSper inhibitor. Also, EV potentiated CatSper currents in human sperm. Furthermore, the EV-in [Ca2+]i increase and CatSper currents were absent in a CatSper-deficient sperm, confirming the crucial role of CatSper in EV induced Ca2+ signaling in human sperm. Both proteins and non-protein components of EV contributed to the increase of [Ca2+]i, which were important for the effects of EV on human sperm. Consequently, EV and its cargos promoted sperm hyperactivated motility. In addition, seminal plasma EV protein-derived peptides, such as NAT1-derived peptide (N-P) and THBS-1-derived peptide (T-P), could activate the sperm calcium signal and enhance sperm function. Interestingly, EV derived from asthenozoospermic semen caused a lower increase of [Ca2+]i than that isolated from normal seminal plasma (N-EV), and N-EV significantly improved sperm motility and function in both asthenozoospermic samples and frozen-thawed sperm. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: This was an in vitro study and caution must be taken when extrapolating the physiological relevance to in vivo regulation of sperm. WIDER IMPLICATIONS OF THE FINDINGS: Our findings demonstrate that the CatSper-mediated-Ca2+ signaling is involved in EV-modulated sperm function under near physiological conditions, and EV and their derivates are a novel CatSper and sperm function regulators with potential for clinical application. They may be developed to improve sperm motility resulting from low [Ca2+]i response and/or freezing and thawing. STUDY FUNDING/COMPETING INTEREST(S): This research was supported by the National Natural Science Foundation of China (32271167), the Social Development Project of Jiangsu Province (BE2022765), the Nantong Social and People's Livelihood Science and Technology Plan (MS22022087), the Basic Science Research Program of Nantong (JC22022086), and the Jiangsu Innovation and Entrepreneurship Talent Plan (JSSCRC2021543). The authors declare no conflict of interest.


Assuntos
Astenozoospermia , Canais de Cálcio , Vesículas Extracelulares , Sêmen , Motilidade dos Espermatozoides , Humanos , Masculino , Astenozoospermia/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Peptídeos/metabolismo , Peptídeos/farmacologia , Sêmen/química , Sêmen/metabolismo , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo
2.
Planta Med ; 88(11): 881-890, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34359084

RESUMO

The root Rhynchosia volubilis was widely used for contraception in folk medicine, although its molecular mechanism on antifertility has not yet been revealed. In human sperm, it was reported that the cation channel of sperm, an indispensable cation channel for the fertilization process, could be regulated by various steroid-like compounds in plants. Interestingly, these nonphysiological ligands would also disturb the activation of the cation channel of sperm induced by progesterone. Therefore, this study aimed to explore whether the compounds in R. volubilis affect the physiological regulation of the cation channel of sperm. The bioguided isolation of the whole herb of R. volubilis has resulted in the novel discovery of five new prenylated isoflavonoids, rhynchones A - E (1:  - 5: ), a new natural product, 5'-O-methylphaseolinisoflavan (6: ) (1H and 13C NMR data, Supporting Information), together with twelve known compounds (7:  - 18: ). Their structures were established by extensive spectroscopic analyses and drawing a comparison with literature data, while their absolute configurations were determined by electronic circular dichroism calculations. The experiments of intracellular Ca2+ signals and patch clamping recordings showed that rhynchone A (1: ) significantly reduced cation channel of sperm activation by competing with progesterone. In conclusion, our findings indicat that rhynchone A might act as a contraceptive compound by impairing the activation of the cation channel of sperm and thus prevent fertilization.


Assuntos
Progesterona , Motilidade dos Espermatozoides , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Humanos , Masculino , Progesterona/análise , Progesterona/metabolismo , Progesterona/farmacologia , Sementes , Espermatozoides/química , Espermatozoides/metabolismo
3.
Orthop J Sports Med ; 9(9): 23259671211042334, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34541018

RESUMO

BACKGROUND: Biomechanical studies have demonstrated significant loosening of the adjustable-loop device as compared with the fixed-loop device used in anterior cruciate ligament reconstruction. Retensioning of the adjustable loop has been recommended; however, the timing of the retensioning is unknown. HYPOTHESIS: Early (ER) and late retensioning (LR) will show similar gapping between the femoral tunnel and graft on follow-up magnetic resonance imaging (MRI) and similar clinical outcomes. STUDY DESIGN: Cohort study; Level of evidence, 3. METHODS: This study included 101 patients who underwent hamstring anterior cruciate ligament reconstruction using the adjustable-loop device for femoral fixation between June 2016 and January 2018. All patients a had follow-up MRI on postoperative day 1. Patients with revision surgery and those with reinjury after reconstruction were excluded. In the ER group, retensioning and knot tying of the initially tightened adjustable loop were performed after the flip of the button and before the graft was fixed at the tibia. In the LR group, retensioning and knot tying were performed after initial tightening of the adjustable loop and graft fixation at the tibial side. The tunnel-graft gap measured on multiplanar reformatted images of MRI scans was compared between the groups, as were clinical outcomes. RESULTS: The mean age of the patients at the time of surgery was 30.3 years (range, 14-61 years). ER and knot tying were performed in 56 patients and LR and knot tying in 45. Preoperative characteristics of the 2 groups showed no significant differences. The mean ± SD tunnel-graft gap was 1.5 ± 2.0 mm in the ER group and 5.4 ± 4.0 mm in the LR group (P < .001). There were no significant differences in clinical outcomes between the groups. CONCLUSION: ER and knot tying demonstrated less tunnel-graft gap than that of LR. However, there were no differences in clinical outcomes according to the timing of retensioning.

4.
Ecotoxicol Environ Saf ; 221: 112418, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34146982

RESUMO

BACKGROUND: Bisphenol A (BPA), a widely used plastic monomer and plasticizer, is detectable in blood, urine and semen of a healthy people, with concentrations ranging from 0.1 nM to 10 nM. It has been shown that in vitro exposure of BPA as low as 0.001 nM could significantly inhibited mouse sperm motility and acrosome reaction. However, it is still unclear whether BPA at those physiologically detectable concentration affects human sperm. METHODS: The effects of different concentrations of BPA (0, 10-3, 10-2, 10-1, 10, 103 nM) on sperm functions were examined, including human sperm viability, kinematic parameters, hyperactivation and capacitation. RESULTS: BPA caused a remarkable decline in human sperm viability, motility and progressive motility, hyperactivation, capacitation and progesterone-induced acrosome reaction. Mechanism studies showed that BPA could suppress the protein tyrosine phosphorylation level of human sperm, but had no effect on sperm calcium signaling. CONCLUSIONS: Physiologically detectable concentrations of BPA may impair human sperm functions via suppressing protein tyrosine phosphorylation of human sperm, implying that environmental pollution of BPA might be a factor contributing to male infertility.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Plastificantes/toxicidade , Espermatozoides/efeitos dos fármacos , Reação Acrossômica/efeitos dos fármacos , Humanos , Masculino , Fosforilação/efeitos dos fármacos , Progesterona/metabolismo , Proteínas/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Tirosina/metabolismo
5.
Chemosphere ; 259: 127493, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32622245

RESUMO

Pentachlorophenol (PCP), a highly toxic contaminant of chlorophenols, is common in a variety of environments and presents serious risks to animal and human health. However, the reproductive toxicity and potential actions of PCP have not been investigated thoroughly, especially in humans. Here, human spermatozoa were used to evaluate the effect of PCP on cell function and to explore the underlying mechanisms. PCP had no substantive effects on sperm viability or motility, nor on the ability to penetrate viscous medium, sperm hyperactivation or spontaneous acrosome reactions. However, PCP significantly inhibited these properties induced by progesterone (P4). Consistent with the functional observations, although PCP itself did not affect the basal intracellular Ca2+ concentrations and CatSper current, PCP dose-dependently inhibited increases of intracellular Ca2+ concentrations caused by P4. In addition, the activation of CatSper induced by P4 was largely suppressed by PCP. This is the first report showing that PCP may serves as an antagonist of the P4 membrane receptor to interfere with Ca2+ signaling by compromising the action of P4 on regulating sperm function. These findings suggest that the reproductive toxicity of PCP should also be a matter of concern as a mammalian health risk.


Assuntos
Pentaclorofenol/farmacologia , Progesterona/farmacologia , Espermatozoides/efeitos dos fármacos , Reação Acrossômica/efeitos dos fármacos , Animais , Cálcio/metabolismo , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Canais de Cálcio/farmacologia , Humanos , Masculino , Pentaclorofenol/metabolismo , Reprodução , Análise do Sêmen , Motilidade dos Espermatozoides/efeitos dos fármacos , Viscosidade
6.
Chemosphere ; 241: 125074, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31627108

RESUMO

Perfluorooctane acid (PFOA), a persistent organic pollutant, is ubiquitously present in the environment and may detrimentally affect male reproductive health. In this study, mature human sperm were in vitro exposed to different concentrations of PFOA (0.25, 2.5 or 25 µg/ml) alone or in combination with progesterone (P4) to evaluate the toxicity and the potential mechanism of action. Exposure to high-dose PFOA (25 µg/ml) alone for 4 h caused a decline in capacity of human spermatozoa to penetrate synthetic mucus, with an increased production of reactive oxygen species (ROS). Furthermore, PFOA treatment (2.5 and 25 µg/ml) evoked a transient rise in intracellular calcium concentration [Ca2+]i by activating the sperm-specific CatSper channel. However, preincubation with PFOA (2.5-25 µg/ml) for 4 h significantly suppressed P4-stimulated extracellular Ca2+ influx in human spermatozoa. Moreover, PFOA pretreatment at all concentrations evaluated markedly compromised P4-induced acrosome reaction and sperm penetration into viscous medium. Taken together, these results suggest that PFOA exposure may impair human sperm function through inducing oxidative stress and disturbing P4-induced Ca2+ signaling.


Assuntos
Canais de Cálcio/metabolismo , Fluorocarbonos/toxicidade , Substâncias Perigosas/toxicidade , Reação Acrossômica , Cálcio/metabolismo , Humanos , Masculino , Progesterona/farmacologia , Espermatozoides/metabolismo
7.
Eur J Med Chem ; 178: 13-29, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31173968

RESUMO

The oncogenic Epstein-Barr virus (EBV) evades the immune system through limiting the expression of its highly antigenic and essential genome maintenance protein, EBNA1, to the minimal level to ensure viral genome replication, thereby also minimizing the production of EBNA1-derived antigenic peptides. This regulation is based on inhibition of translation of the virally-encoded EBNA1 mRNA, and involves the interaction of host protein nucleolin (NCL) with G-quadruplex (G4) structures that form in the glycine-alanine repeat (GAr)-encoding sequence of the EBNA1 mRNA. Ligands that bind to these G4-RNA can prevent their interaction with NCL, leading to disinhibition of EBNA1 expression and antigen presentation, thereby interfering with the immune evasion of EBNA1 and therefore of EBV (M.J. Lista et al., Nature Commun., 2017, 8, 16043). In this work, we synthesized and studied a series of 20 cationic bis(acylhydrazone) derivatives designed as G4 ligands. The in vitro evaluation showed that most derivatives based on central pyridine (Py), naphthyridine (Naph) or phenanthroline (Phen) units were efficient G4 binders, in contrast to their pyrimidine (Pym) counterparts, which were poor G4 binders due to a significantly different molecular geometry. The influence of lateral heterocyclic units (N-substituted pyridinium or quinolinium residues) on G4-binding properties was also investigated. Two novel compounds, namely PyDH2 and PhenDH2, used at a 5 µM concentration, were able to significantly enhance EBNA1 expression in H1299 cells in a GAr-dependent manner, while being significantly less toxic than the prototype drug PhenDC3 (GI50 > 50 µM). Antigen presentation, RNA pull-down and proximity ligation assays confirmed that the effect of both drugs was related to the disruption of NCL-EBNA1 mRNA interaction and the subsequent promotion of GAr-restricted antigen presentation. Our work provides a novel modular scaffold for the development of G-quadruplex-targeting drugs acting through interference with G4-protein interaction.


Assuntos
Hidrazonas/farmacologia , Evasão da Resposta Imune/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Fosfoproteínas/metabolismo , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular Tumoral , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Quadruplex G , Herpesvirus Humano 4/genética , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Fatores Imunológicos/síntese química , Fatores Imunológicos/química , Ligantes , Camundongos , RNA Mensageiro/genética , Nucleolina
8.
J Agric Food Chem ; 61(5): 1117-23, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23301834

RESUMO

Adenosine 5'-monophosphate-activated protein kinase (AMPK) is an intracellular sensor that can regulate glucose levels within the cell. For this reason, it is well-known to be a target for drugs against diabetes and obesity. AMPK was activated significantly by the hexane extract of barley sprouts. This AMPK activation emerges across the growth stages of the sprout, becoming most significant (3 times above the initial stages) 10 days after sprouting. After this time, the activation decreased between 13 and 20 days post-sprouting. Analysis of the hexane extracts by gas chromatography-mass spectrometry showed that the amounts of policosanols (PCs, which are linear, primary aliphatic alcohols with 20-30 carbons) in the plant dramatically increased between 5 days (109.7 mg/100 g) and 10 days (343.7 mg/100 g) post-sprouting and then levels fell back down, reaching 76.4 mg/100 g at 20 days post-sprouting. This trend is consistent with PCs being the active ingredient in the barley plants. We validate this by showing that hexacosanol is an activator of AMPK. The richest cultivar for PCs was found to be the Daejin cultivar. Cultivars had a significant effect on the total PC content (113.2-183.5 mg/100 g) within the plant up to 5 days post-sprouting. However this dependence upon the cultivar was not so apparent at peak stages of PC production (10 days post-sprouting). The most abundant PC in barley sprout, hexacosanol, contributed 62-80% of the total PC content at every stage. These results are valuable to determine the optimal times of harvest to obtain the highest yield of PCs.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Álcoois Graxos/química , Hordeum/química , Extratos Vegetais/química , Sobrevivência Celular/efeitos dos fármacos , Álcoois Graxos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Células Hep G2 , Humanos , Immunoblotting , Fosforilação , Extratos Vegetais/farmacologia , Folhas de Planta/química
9.
J Nat Prod ; 75(10): 1706-11, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23031087

RESUMO

The in vitro effects on melanogenesis of γ-oryzanol (1), a rice bran-derived phytosterol, were investigated. The melanin content in B16F1 cells was significantly and dose-dependently reduced (-13% and -28% at 3 and 30 µM, respectively). Tyrosinase enzyme activity was inhibited by 1 both in a cell-free assay and when analyzed based on the measurement of cellular tyrosinase activity. Transcriptome analysis was performed to investigate the biological pathways altered by 1, and it was found that gene expression involving protein kinase A (PKA) signaling was markedly altered. Subsequent analyses revealed that 1 stimulation in B16 cells reduced cytosolic cAMP concentrations, PKA activity (-13% for cAMP levels and -40% for PKA activity), and phosphorylation of the cAMP-response element binding protein (-57%), which, in turn, downregulated the expression of microphthalmia-associated transcription factor (MITF; -59% for mRNA and -64% for protein), a key melanogenic gene transcription factor. Accordingly, tyrosinase-related protein 1 (TRP-1; -69% for mRNA and -82% for protein) and dopachrome tautomerase (-51% for mRNA and -92% for protein) in 1-stimulated B16F1 cells were also downregulated. These results suggest that 1 has dual inhibitory activities for cellular melanogenesis by inhibiting tyrosinase enzyme activity and reducing MITF and target genes in the PKA-dependent pathway.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Melaninas/genética , Monofenol Mono-Oxigenase/metabolismo , Oryza/química , Fenilpropionatos/farmacologia , AMP Cíclico/análise , Oxirredutases Intramoleculares/genética , Melaninas/metabolismo , Estrutura Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores , Oryza/genética , Fenilpropionatos/química
10.
J Med Food ; 15(4): 399-405, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22316298

RESUMO

Grains of sugary rice were extracted with 80% aqueous methanol, and the concentrated extracts were successively partitioned using ethyl acetate, n-butanol, and water. From the n-butanol fractions, four flavonoid glycosides were isolated through repeated silica gel, octadecyl silica gel, and Sephadex LH-20 column chromatographies. Based on the nuclear magnetic resonance, mass spectrometry, and infrared spectroscopic data, the chemical structures of the compounds were determined to be taxifolin-7-O-ß-d-glucopyranoside (1), hyperin (2), isoquercitrin (3), and quercetin gentiobioside (4). These compounds were isolated from the grains of sugary rice for the first time. All isolated compounds were tested for antioxidant activity and low-density lipoprotein (LDL)-antioxidative activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and LDL assays. Compound 1 exhibited a strong scavenging effect on DPPH, with a 50% inhibition concentration (IC(50)) value of 8.1 µM, and also inhibited LDL oxidation with an IC(50) value of 40.0±20 µM. A simple and efficient high-performance liquid chromatography/diode array detection method for the simultaneous determination of the four bioactive flavonoids (1-4) has been developed and applied to their content determination in the sugary rice. The grains were extracted by 80% methanol, and the contents of 1, 2, 3, and 4 were determined to be 1.12±0.045, 0.65±0.011, 0.68±0.032, and 0.89±0.021 mg/g, respectively.


Assuntos
Antioxidantes/química , Flavonoides/química , Lipoproteínas LDL/análise , Oryza/química , Extratos Vegetais/farmacologia , 1-Butanol , Antioxidantes/farmacologia , Carboidratos/análise , Cromatografia Líquida de Alta Pressão/métodos , Dextranos , Flavonoides/farmacologia , Glicosídeos/análise , Concentração Inibidora 50 , Limite de Detecção , Oxirredução
11.
Biochem J ; 416(1): 47-54, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18605987

RESUMO

The HBV (hepatitis B virus) core is a phosphoprotein whose assembly, replication, encapsidation and localization are regulated by phosphorylation. It is known that PKC (protein kinase C) regulates pgRNA (pregenomic RNA) encapsidation by phosphorylation of the C-terminus of core, which is a component packaged into capsid. Neither the N-terminal residue phosphorylated by PKC nor the role of the C-terminal phosphorylation have been cleary defined. In the present study we found that HBV Cp149 (core protein C-terminally truncated at amino acid 149) expressed in Escherichia coli was phosphorylated by PKC at Ser(106). PKC-mediated phosphorylation increased core affinity, as well as assembly and capsid stability. In vitro phosphorylation with core mutants (S26A, T70A, S106A and T114A) revealed that the Ser(106) mutation inhibited phosphorylation of core by PKC. CD analysis also revealed that PKC-mediated phosphorylation stabilized the secondary structure of capsid. When either pCMV/FLAG-Cp149[WT (wild-type)] or pCMV/FLAG-S106A Cp149 was transfected into Huh7 human hepatoma cells, mutant capsid level was decreased by 2.06-fold with the S106A mutant when compared with WT, although the same level of total protein was expressed in both cases. In addition, when pUC1.2x and pUC1.2x/S106A were transfected, mutant virus titre was decreased 2.31-fold compared with WT virus titre. In conclusion, PKC-mediated phosphorylation increased capsid assembly, stability and structural stability.


Assuntos
Capsídeo/fisiologia , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Proteína Quinase C/metabolismo , Carcinoma Hepatocelular/metabolismo , Dicroísmo Circular , Antígenos do Núcleo do Vírus da Hepatite B/química , Antígenos do Núcleo do Vírus da Hepatite B/genética , Vírus da Hepatite B/genética , Humanos , Fosforilação , Estrutura Secundária de Proteína , Ressonância de Plasmônio de Superfície , Células Tumorais Cultivadas
12.
J Biol Chem ; 281(42): 31770-7, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16940298

RESUMO

Cyclin D1 is frequently overexpressed in hepatocellular carcinoma (HCC) exhibiting increased malignant phenotypes. It has also been known that the hepatitis Bx (HBx) protein is strongly associated with HCC development and progression. Although overexpression of both proteins is related to HCC, the relationship between the two has not been well studied. Here we show that HBx up-regulates cyclin D1 and that this process is mediated by the NF-kappaB2(p52)/BCL-3 complex. Our experiments indicate that HBx up-regulates BCL-3 in the mRNA level, which subsequently results in the up-regulation of the NF-kappaB2(p52)/BCL-3 complex in the nucleus. Moreover, impaired HBx-mediated BCL-3 up-regulation by small interfering RNA for BCL-3 reduced HBx-mediated cyclin D1 up-regulation. Down-regulation of the HBx protein level by p53 also reduced HBx-mediated cyclin D1 up-regulation. From these results, we conclude that the up-regulation of cyclin D1 by HBx is mediated by the up-regulation of NF-kappaB2(p52)/BCL-3 in the nucleus. This HBx-mediated-cyclin D1 up-regulation might play an important role in the HBx-mediated HCC development and progression.


Assuntos
Ciclina D1/biossíntese , Regulação Neoplásica da Expressão Gênica , Subunidade p52 de NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima , Animais , Proteína 3 do Linfoma de Células B , Sítios de Ligação , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ciclina D1/genética , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Virais Reguladoras e Acessórias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA