Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Nutrients ; 16(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38613018

RESUMO

Alopecia, a prevalent yet challenging condition with limited FDA-approved treatments which is accompanied by notable side effects, necessitates the exploration of natural alternatives. This study elucidated the hair growth properties of Gynostemma pentaphyllum leaf hydrodistillate (GPHD) both in vitro and in vivo. Furthermore, damulin B, a major component of GPHD, demonstrated hair growth-promoting properties in vitro. Beyond its established anti-diabetic, anti-obesity, and anti-inflammatory attributes, GPHD exhibited hair growth induction in mice parallel to minoxidil. Moreover, it upregulated the expression of autocrine factors associated with hair growth, including VEGF, IGF-1, KGF, and HGF. Biochemical assays revealed that minoxidil, GPHD, and damulin B induced hair growth via the Wnt/ß-catenin pathway through AKT signaling, aligning with in vivo experiments demonstrating improved expression of growth factors. These findings suggest that GPHD and damulin B contribute to the hair growth-inducing properties of dermal papilla cells through the AKT/ß-catenin signaling pathway.


Assuntos
Gynostemma , beta Catenina , Animais , Camundongos , Minoxidil , Proteínas Proto-Oncogênicas c-akt , Via de Sinalização Wnt , Cabelo
2.
Antioxidants (Basel) ; 12(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36978808

RESUMO

Pathogenic helminths have evolved mechanisms to preserve reproductive function while surviving long-term in the host via robust protective responses. A protective role of antioxidant enzymes in preventing DNA degradation has long been proposed, but little evidence has been provided. Here, we show that omega-class glutathione transferases (GSTOs) are critical for maintaining viability by protecting the reproductive cell DNA of the carcinogenic liver fluke, Clonorchis sinensis. Clonorchis sinensis GSTO (CsGSTO) activities modified by changes in the GSH/GSSG and NADPH/NADP+ molar ratios suppressed the overproduction of reactive oxygen species. CsGSTO1 and CsGSTO2 catalyzed deglutathionylation under physiologic and low-stress conditions (GSH/GSSG ratio of 6:1 or higher) but promoted glutathionylation under high-stress conditions (GSH/GSSG ratio of 3:1 or lower). Gliotoxin-induced functional disruption of CsGSTOs in living C. sinensis reduced the GSH/GSSG molar ratio and increased the production of protein glutathionylation (PSSG) under physiologic and low-stress conditions, indicating that suppression of GSTO function did not affect deglutathionylation. However, the perturbation of CsGSTOs decreased the GSH/GSSG ratio but also reduced PSSG production under high oxidative stress, demonstrating that glutathionylation was impeded. In response to oxidative stimuli, C. sinensis decreased GSTO-specific dehydroascorbate reductase and thiol transferase activities and the GSH/GSSG ratio, while it increased the NADPH/NADP+ ratio and PSSG. CsGSTOs utilized GSH to regulate GSH/GSSG and NADPH/NADP+ recycling and triggered a redox signal leading to nuclear translocation. Nuclear-imported CsGSTOs were modified by glutathionylation to prevent DNA damage. Antibodies specific to CsGSTOs dose-dependently inhibited this process. Disruption of CsGSTOs or the depletion of GSH caused glutathionylation defects, leading to DNA degradation. Our results demonstrate that CsGSTOs and the GSH system play a previously unappreciated role in protecting DNA from oxidative stress.

3.
Sci Rep ; 13(1): 1495, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707670

RESUMO

Recent therapeutic advances in breast cancer (BC) have improved survival outcomes; however, the prognosis for patients with bone metastasis (BM) remains poor. Hence, novel clinical biomarkers are needed to accurately predict BC BM as well as to promote personalized medicine. Here, we discovered a novel biomarker, TOR1B, for BM in BC patients via analysis of BC gene expression data and clinical information downloaded from open public databases. In cancer cells, we found high expression levels of TOR1B in the nucleus and endoplasmic reticulum. Regarding gene expression, the level of TOR1B was significantly upregulated in BC patients with BM (p < 0.05), and the result was externally validated. In addition, gene expression clearly demonstrated two distinct types of prognoses in ER- and PR-positive patients. In multivariate regression, the gene could be an independent predictor of BM in BC patients, i.e., a low expression level of TOR1B was associated with delayed metastasis to bone in BC patients (HR, 0.28; 95% CI 0.094-0.84). Conclusively, TOR1B might be a useful biomarker for predicting BM; specifically, patients with ER- and PR-positive subtypes would benefit from the clinical use of this promising prognostic biomarker.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Feminino , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/genética , Neoplasias da Mama/patologia , Núcleo Celular/metabolismo , Prognóstico
4.
Nutrients ; 14(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501027

RESUMO

The clinical application of cisplatin, one of the most effective chemotherapeutic agents used to treat various cancers, has been limited by the risk of adverse effects, notably nephrotoxicity. Despite intensive research for decades, there are no effective approaches for alleviating cisplatin nephrotoxicity. This study aimed to investigate the protective effects and potential mechanisms of a Gynostemma pentaphyllum leaves hydrodistillate (GPHD) and its major component, damulin B, against cisplatin-induced nephrotoxicity in vitro and in vivo. A hydro-distillation method can extract large amounts of components within a short period of time using non-toxic, environmentally friendly solvent. We found that the levels of AMP-activated protein kinase α1 (AMPKα1), reactive oxygen species (ROS), and apoptosis were tightly associated with each other in HEK293 cells treated with cisplatin. We demonstrated that AMPKα1 acted as an anti-oxidant factor and that ROS generated by cisplatin suppressed the expression of AMPKα1 at the transcriptional level, thereby resulting in induction of apoptosis. Treatment with GPHD or damulin B effectively prevented cisplatin-induced apoptosis of HEK293 cells and cisplatin-induced acute kidney injury in mice by suppressing oxidative stress and maintaining AMPKα1 levels. Therefore, our study suggests that GPHD and damulin B may serve as prospective adjuvant agents against cisplatin-induced nephrotoxicity.


Assuntos
Cisplatino , Gynostemma , Humanos , Camundongos , Animais , Cisplatino/toxicidade , Células HEK293 , Apoptose , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Rim/metabolismo
5.
Nutrients ; 14(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432618

RESUMO

The ketone bodies (KBs) ß-hydroxybutyrate and acetoacetate are important alternative energy sources for glucose during nutrient deprivation. KBs synthesized by hepatic ketogenesis are catabolized to acetyl-CoA through ketolysis in extrahepatic tissues, followed by the tricarboxylic acid cycle and electron transport chain for ATP production. Ketogenesis and ketolysis are regulated by the key rate-limiting enzymes, 3-hydroxy-3-methylglutaryl-CoA synthase 2 and succinyl-CoA:3-oxoacid-CoA transferase, respectively. KBs participate in various cellular processes as signaling molecules. KBs bind to G protein-coupled receptors. The most abundant KB, ß-hydroxybutyrate, regulates gene expression and other cellular functions by inducing post-translational modifications. KBs protect tissues by regulating inflammation and oxidative stress. Recently, interest in KBs has been increasing due to their potential for treatment of various diseases such as neurological and cardiovascular diseases and cancer. Cancer cells reprogram their metabolism to maintain rapid cell growth and proliferation. Dysregulation of KB metabolism also plays a role in tumorigenesis in various types of cancer. Targeting metabolic changes through dietary interventions, including fasting and ketogenic diets, has shown beneficial effects in cancer therapy. Here, we review current knowledge of the molecular mechanisms involved in the regulation of KB metabolism and cellular signaling functions, and the therapeutic potential of KBs and ketogenic diets in cancer.


Assuntos
Dieta Cetogênica , Neoplasias , Humanos , Ácido 3-Hidroxibutírico , Corpos Cetônicos/metabolismo , Transdução de Sinais , Neoplasias/tratamento farmacológico
6.
Biochem Biophys Res Commun ; 635: 37-45, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36257190

RESUMO

Doxorubicin is one of the most effective chemotherapeutic agents available for treating various cancers, including lung cancer-the leading cause of cancer death in both men and women. However, its clinical application has been impeded by severe adverse effects, notably cardiotoxicity. Development of cellular resistance to doxorubicin is another major obstacle that must be overcome for broader application of the drug. In the present study, we examined the therapeutic potential of beta-naphthoflavone (BNF), a synthetic derivative of a naturally occurring flavonoid, in combination with doxorubicin for the treatment of lung cancer. Among our novel observations were that BNF enhances the efficacy of doxorubicin by inducing doxorubicin accumulation, mitochondrial ROS generation, and JNK pathway signaling in lung cancer cells. These combined effects were also evident in many other cancer cell types. BNF further exhibited synergistic induction of apoptosis in lung cancer cells when combined with several other cancer drugs, including irinotecan, cisplatin, and 5-fluorouracil. Our results suggest that BNF can be developed as a promising adjuvant agent for enhancing the efficacy of doxorubicin.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Feminino , Sistema de Sinalização das MAP Quinases , Espécies Reativas de Oxigênio/metabolismo , beta-Naftoflavona/farmacologia , Apoptose , Doxorrubicina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/farmacologia , Linhagem Celular Tumoral
7.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077072

RESUMO

Compound C (CompC), an inhibitor of AMP-activated protein kinase, reduces the viability of various renal carcinoma cells. The molecular mechanism underlying anti-proliferative effect was investigated by flow cytometry and western blot analysis in Renca cells. Its effect on the growth of Renca xenografts was also examined in a syngeneic BALB/c mouse model. Subsequent results demonstrated that CompC reduced platelet-derived growth factor receptor signaling pathways and increased ERK1/2 activation as well as reactive oxygen species (ROS) production. CompC also increased the level of active Wee1 tyrosine kinase (P-Ser642-Wee1) and the inactive form of Cdk1 (P-Tyr15-Cdk1) while reducing the level of active histone H3 (P-Ser10-H3). ROS-dependent ERK1/2 activation and sequential alterations in Wee1, Cdk1, and histone H3 might be responsible for the CompC-induced G2/M cell cycle arrest and cell viability reduction. In addition, CompC reduced the adhesion, migration, and invasion of Renca cells in the in vitro cell systems, and growth of Renca xenografts in the BALB/c mouse model. Taken together, the inhibition of in vivo tumor growth by CompC may be attributed to the blockage of cell cycle progression, adhesion, migration, and invasion of tumor cells. These findings suggest the therapeutic potential of CompC against tumor development and progression.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Carcinoma de Células Renais/patologia , Divisão Celular , Modelos Animais de Doenças , Histonas , Humanos , Neoplasias Renais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo
10.
Cells ; 11(4)2022 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35203301

RESUMO

Aggressive and recurrent gynecological cancers are associated with worse prognosis and a lack of effective therapeutic response. Ovarian cancer (OC) patients are often diagnosed in advanced stages, when drug resistance, angiogenesis, relapse, and metastasis impact survival outcomes. Currently, surgical debulking, radiotherapy, and/or chemotherapy remain the mainstream treatment modalities; however, patients suffer unwanted side effects and drug resistance in the absence of targeted therapies. Hence, it is urgent to decipher the complex disease biology and identify potential biomarkers, which could greatly contribute to making an early diagnosis or predicting the response to specific therapies. This review aims to critically discuss the current therapeutic strategies for OC, novel drug-delivery systems, and potential biomarkers in the context of genetics and molecular research. It emphasizes how the understanding of disease biology is related to the advancement of technology, enabling the exploration of novel biomarkers that may be able to provide more accurate diagnosis and prognosis, which would effectively translate into targeted therapies, ultimately improving patients' overall survival and quality of life.


Assuntos
Neoplasias Ovarianas , Qualidade de Vida , Biomarcadores , Carcinoma Epitelial do Ovário , Humanos , Recidiva Local de Neoplasia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/terapia , Tecnologia
11.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613569

RESUMO

One in three cancer deaths worldwide are caused by gastric and colorectal cancer malignancies. Although the incidence and fatality rates differ significantly from country to country, the rates of these cancers in East Asian nations such as South Korea and Japan have been increasing each year. Above all, the biggest danger of this disease is how challenging it is to recognize in its early stages. Moreover, most patients with these cancers do not present with any disease symptoms before receiving a definitive diagnosis. Currently, volatile organic compounds (VOCs) are being used for the early prediction of several other diseases, and research has been carried out on these applications. Exhaled VOCs from patients possess remarkable potential as novel biomarkers, and their analysis could be transformative in the prevention and early diagnosis of colon and stomach cancers. VOCs have been spotlighted in recent studies due to their ease of use. Diagnosis on the basis of patient VOC analysis takes less time than methods using gas chromatography, and results in the literature demonstrate that it is possible to determine whether a patient has certain diseases by using organic compounds in their breath as indicators. This study describes how VOCs can be used to precisely detect cancers; as more data are accumulated, the accuracy of this method will increase, and it can be applied in more fields.


Assuntos
Neoplasias Colorretais , Neoplasias Gástricas , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Biomarcadores , Cromatografia Gasosa-Espectrometria de Massas , Neoplasias Gástricas/diagnóstico , Expiração , Testes Respiratórios/métodos , Neoplasias Colorretais/diagnóstico
13.
Int J Mol Sci ; 22(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34947978

RESUMO

The downregulation of reactive oxygen species (ROS) facilitates precancerous tumor development, even though increasing the level of ROS can promote metastasis. The transforming growth factor-beta (TGF-ß) signaling pathway plays an anti-tumorigenic role in the initial stages of cancer development but a pro-tumorigenic role in later stages that fosters cancer metastasis. TGF-ß can regulate the production of ROS unambiguously or downregulate antioxidant systems. ROS can influence TGF-ß signaling by enhancing its expression and activation. Thus, TGF-ß signaling and ROS might significantly coordinate cellular processes that cancer cells employ to expedite their malignancy. In cancer cells, interplay between oxidative stress and TGF-ß is critical for tumorigenesis and cancer progression. Thus, both TGF-ß and ROS can develop a robust relationship in cancer cells to augment their malignancy. This review focuses on the appropriate interpretation of this crosstalk between TGF-ß and oxidative stress in cancer, exposing new potential approaches in cancer biology.


Assuntos
Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Estresse Oxidativo , Transdução de Sinais
14.
Exp Mol Med ; 53(9): 1413-1422, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34584194

RESUMO

Doxorubicin is one of the most effective agents used to treat various cancers, including breast cancer, but its usage is limited by the risk of adverse effects, including cardiotoxicity. Melatonin, a natural hormone that functions as a major regulator of circadian rhythms, has been considered a supplemental component for doxorubicin due to its potential to improve its effectiveness. However, the mechanisms and biological targets of the combination of melatonin and doxorubicin with respect to cancer cell death are not well understood. In the present study, we found that melatonin synergized with doxorubicin to induce apoptosis of breast cancer cells by decreasing the expression of AMP-activated protein kinase α1 (AMPK α1), which acts as a critical survival factor for cancer cells. This cotreatment-induced reduction in AMPKα1 expression occurred at the transcriptional level via an autophagy-dependent mechanism. The synergistic effects of the combined treatment were evident in many other cancer cell lines, and melatonin was also highly effective in inducing cancer death when combined with other cancer drugs, including cisplatin, 5-fluorouracil, irinotecan, and sorafenib. AMPKα1 expression was decreased in all of these cases, suggesting that reducing AMPKα1 can be considered an effective method to increase the sensitivity of cancer cells to doxorubicin treatment.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Doxorrubicina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Melatonina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular Tumoral , Sinergismo Farmacológico , Técnicas de Silenciamento de Genes , Humanos
15.
Antioxidants (Basel) ; 10(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202740

RESUMO

The small liver fluke Clonorchis sinensis causes hepatobiliary ductal infections in humans. Clonorchiasis is characterized histopathologically by ductal dysplasia, hyperplasia and metaplasia, which closely resembles cholangiocarcinoma (CCA). The disruption of programmed cell death is critical for malignant transformation, while molecular events underlying these phenomena have poorly been understood in clonorchiasis-related CCA tumorigenesis. We incorporated recombinant C. sinensis omega-class glutathione transferase (rCsGSTo) 1 or 2 into human intrahepatic biliary epithelial cells (HIBECs) and analyzed pathophysiological alterations of HIBECs upon the application of oxidative stress. rCsGSTos partially but significantly rescued HIBECs from cell death by inhibiting oxidative stress-induced apoptosis (p < 0.01). rCsGSTos modulated transcriptional levels of numerous genes. We analyzed 13 genes involved in programmed cell death (the upregulation of five antiapoptotic and two apoptotic genes, and the downregulation of one antiapoptotic and five apoptotic genes) and 11 genes associated with cell differentiation (the increase in seven and decrease in four genes) that showed significant modifications (p < 0.05). The induction profiles of the mRNA and proteins of these differentially regulated genes correlated well with each other, and mostly favored apoptotic suppression and/or cell differentiation. We detected increased active, phosphorylated forms of Src, PI3K/Akt, NF-κB p65, MKK3/6 and p38 MAPK, but not JNK and ERK1/2. CsGSTos were localized in the C. sinensis-infected rat cholangiocytes, where cytokeratin 19 was distributed. Our results demonstrated that CsGSTos excreted to the biliary lumen are internalized and accumulated in the host cholangiocytes. When cholangiocytes underwent oxidative stressful condition, CsGSTos appeared to be critically involved in both antiapoptotic process and the differentiation of host cholangiocytes through the regulation of target genes following the activation of responsible signal molecules.

16.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204438

RESUMO

Hepatitis C virus (HCV) is associated with various liver diseases. Chronic HCV infection is characterized by an abnormal host immune response. Therefore, it is speculated that to suppress HCV, a well-regulated host immune response is necessary. 2-O-methylhonokiol was identified by the screening of anti-HCV compounds using Renilla luciferase assay in Huh 7.5/Con 1 genotype 1b replicon cells. Here, we investigated the mechanism by which 2-O-methylhonokiol treatment inhibits HCV replication using real-time PCR. Our data shows that treatment with 2-O-methylhonokiol activated innate immune responses via nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathway. Additionally, the immunoprecipitation result shows that treatment with 2-O-methylhonokiol augmented tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) by preventing p62 from binding to TRAF6, resulting in reduced autophagy caused by HCV. Finally, we reproduced our data with the conditioned media from 2-O-methylhonokiol-treated cells. These findings strongly suggest that 2-O-methylhonokiol enhances the host immune response and suppresses HCV replication via TRAF6-mediated NF-kB activation.


Assuntos
Hepacivirus/fisiologia , Hepatite C/metabolismo , Hepatite C/virologia , Interações Hospedeiro-Patógeno , NF-kappa B/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Replicação Viral , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linhagem Celular , Células Cultivadas , Hepatite C/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Modelos Biológicos , Estrutura Molecular
17.
Biology (Basel) ; 10(2)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671902

RESUMO

Proteasome inhibitors, such as bortezomib (BZ) and carfilzomib (CFZ), have been suggested as treatments for various cancers. To utilize BZ and/or CFZ as effective therapeutics for treating melanoma, we studied their molecular mechanisms using B16-F1 melanoma cells. Flow cytometry of Annexin V-fluorescein isothiocyanate-labeled cells indicated apoptosis induction by treatment with BZ and CFZ. Apoptosis was evidenced by the activation of various caspases, including caspase 3, 8, 9, and 12. Treatment with BZ and CFZ induced endoplasmic reticulum (ER) stress, as indicated by an increase in eIF2α phosphorylation and the expression of ER stress-associated proteins, including GRP78, ATF6α, ATF4, XBP1, and CCAAT/enhancer-binding protein homologous protein. The effects of CFZ on ER stress and apoptosis were lower than that of BZ. Nevertheless, CFZ and BZ synergistically induced ER stress and apoptosis in B16-F1 cells. Furthermore, the combinational pharmacological interactions of BZ and CFZ against the growth of B16-F1 melanoma cells were assessed by calculating the combination index and dose-reduction index with the CompuSyn software. We found that the combination of CFZ and BZ at submaximal concentrations could obtain dose reduction by exerting synergistic inhibitory effects on cell growth. Moreover, this drug combination reduced tumor growth in C57BL/6 syngeneic mice. Taken together, these results suggest that CFZ in combination with BZ may be a beneficial and potential strategy for melanoma treatment.

18.
Biochem Biophys Res Commun ; 552: 44-51, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33743348

RESUMO

Hepatocellular carcinoma (HCC) is the fifth common types of cancer with poor prognosis in the world. Honokiol (HNK), a natural biphenyl compound derived from the magnolia plant, has been reported to exert anticancer effects, but its mechanism has not been elucidated exactly. In the present study, HNK treatment significantly suppressed the migration ability of HepG2 and Hep3B human hepatocellular carcinoma. The treatment reduced the expression levels of the genes associated with cell migration, such as S100A4, MMP-2, MMP-9 and Vimentin. Interestingly, treatment with HNK significantly reduced the expression level of Cyclophilin B (CypB) which stimulates cancer cell migration. However, overexpressed CypB abolished HNK-mediated suppression of cell migration, and reversed the apoptotic effects of HNK. Altogether, we concluded that the suppression of migration activities by HNK was through down-regulated CypB in HCC. These finding suggest that HNK may be a promising candidate for HCC treatment via regulation of CypB.


Assuntos
Compostos de Bifenilo/farmacologia , Carcinoma Hepatocelular/genética , Movimento Celular/efeitos dos fármacos , Ciclofilinas/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Lignanas/farmacologia , Neoplasias Hepáticas/genética , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Ciclofilinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
19.
J Microbiol Biotechnol ; 31(4): 540-549, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33746192

RESUMO

The Wnt/ß-catenin signaling pathway is involved in breast cancer and Myxococcus fulvus KYC4048 is a myxobacterial strain that can produce a variety of bioactive secondary metabolites. Although a previous study revealed that KYC4048 metabolites exhibit anti-proliferative effects on breast cancer, the biochemical mechanism involved in their effects remains unclear. In the present study, KYC4048 metabolites were separated into polar and non-polar (ethyl acetate and n-hexane) fractions via liquid-liquid extraction. The effects of these polar and non-polar KYC4048 metabolites on the viability of breast cancer cells were then determined by MTT assay. Expression levels of Wnt/ß-catenin pathway proteins were determined by Western blot analysis. Cell cycle and apoptosis were measured via fluorescence-activated cell sorting (FACS). The results revealed that non-polar KYC4048 metabolites induced cell death of breast cancer cells and decreased expression levels of WNT2B, ß-catenin, and Wnt target genes (c-Myc and cyclin D1). Moreover, the n-hexane fraction of non-polar KYC4048 metabolites was found most effective in inducing apoptosis, necrosis, and cell cycle arrest, leading us to conclude that it can induce apoptosis of breast cancer cells through the Wnt/ß-catenin pathway. These findings provide evidence that the n-hexane fraction of non-polar KYC4048 metabolites can be developed as a potential therapeutic agent for breast cancer via inhibition of the Wnt/ß-catenin pathway.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Myxococcus/química , Via de Sinalização Wnt/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Ciclina D1 , Glicoproteínas , Humanos , Células MCF-7 , Proteínas Proto-Oncogênicas c-myc , Proteínas Wnt , beta Catenina
20.
J Infect ; 82(1): 150-158, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017628

RESUMO

OBJECTIVES: Paragonimiasis is a global foodborne zoonosis. Overlapping clinical and imaging features with other lung pathologies hamper correct diagnosis and require differential diagnosis. METHODS: During 1982-2003, 49,012 samples were referred for immunodiagnosis of helminthiases. We detected paragonimiasis cases by enzyme-linked immunosorbent assay (ELISA). We assessed clinical, radiographical and laboratory characteristics, and diagnostic dilemmas associated with delayed diagnosis. RESULTS: We analyzed 685 pleuropulmonary paragonimiasis cases. ELISA-positive was 665. Eggs were detected in 50. Symptom duration correlated well with the appearance of chest radiographs; 359 pleural, 33 pleuroparenchymal, and 264 parenchymal lesions (P < 0.001). Twenty-nine had normal chest images. Eosinophilia, seen in 304, was common in pleural and pleuroparenchymal patients (P < 0.05). Chest pain and dyspnea were characteristic for pleurisy patients. Sputum (odds ratios [OR]: 6.79; 95% CI: 4.41-10.47), blood-tinged sputum (OR: 5.62; 95% CI: 3.75-8.42), and foul-odor (OR: 2.70; 95% CI: 1.42-5.16) were significant in parenchymal patients. Delayed diagnosis (119) for ≥ 25 weeks was attributed mainly to misdiagnosis as tuberculosis, malignancy, or chronic obstructive pulmonary disease (COPD) (OR: 111.75; 95% CI: 43.25-288.74). CONCLUSIONS: Variable symptoms and radiographs of pleuropulmonary paragonimiasis depended on the stage of infection. Suspicion of tuberculosis, malignancy, or COPD was major cause of delayed diagnosis.


Assuntos
Eosinofilia , Paragonimíase , Tuberculose , Humanos , Paragonimíase/diagnóstico por imagem , Paragonimíase/epidemiologia , Pleura , Escarro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA