Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(7): 6566-6587, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38604164

RESUMO

Traumatic brain injury (TBI) and its resulting complications pose a major challenge to global public health, resulting in increased rates of disability and mortality. Cerebrovascular dysfunction is nearly universal in TBI cases and is closely associated with secondary injury after TBI. Transcranial direct current stimulation (tDCS) shows great potential in the treatment of TBI; however, the exact mechanism remains elusive. In this study, we performed in vivo and in vitro experiments to explore the effects and mechanisms of tDCS in a controlled cortical impact (CCI) rat model simulating TBI. In vivo experiments show that tDCS can effectively reduce brain tissue damage, cerebral edema and neurological deficits. The potential mechanism may be that tDCS improves the neurological function of rats by increasing orexin A (OXA) secretion, upregulating the TF-AKT/ERK signaling pathway, and promoting angiogenesis at the injury site. Cellular experiments showed that OXA promoted HUVEC migration and angiogenesis, and these effects were counteracted by the ERK1/2 inhibitor LY3214996. The results of Matrigel experiment in vivo showed that TNF-a significantly reduced the ability of HUVEC to form blood vessels, but OXA could rescue the effect of TNF-a on the ability of HUVEC to form blood vessels. However, LY3214996 could inhibit the therapeutic effect of OXA. In summary, our preliminary study demonstrates that tDCS can induce angiogenesis through the OXA-TF-AKT/ERK signaling pathway, thereby improving neurological function in rats with TBI.


Assuntos
Lesões Encefálicas Traumáticas , Sistema de Sinalização das MAP Quinases , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas c-akt , Estimulação Transcraniana por Corrente Contínua , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/terapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Ratos Sprague-Dawley , Humanos , Células Endoteliais da Veia Umbilical Humana , Modelos Animais de Doenças , Transdução de Sinais , Angiogênese
2.
J Immunother Cancer ; 11(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36787938

RESUMO

BACKGROUND: GLI-similar 1 (GLIS1) is one of of Krüppel-like zinc finger proteins, which are either stimulators or inhibitors of genetic transcription. Nevertheless, its effects on T cell were elusive. METHODS: In this study, we intend to explore the effects of GLIS1 on modulating the anticancer potency of CD8+ T cells in hepatocellular carcinoma (HCC). The expression of GLIS1 in CD8 peripheral blood mononuclear cell and CD8 tumor-infiltrating lymphocytes of HCC tissues was validated by quantificational real-time-PCR and flow cytometry. The anticancer potency of CD8+ T cells with GLIS1 knock down was confirmed in C57BL/6 mouse model and HCC patient-derived xenograft mice model. GLIS1-/- C57BL/6 mice was applied to explore the effects GLIS1 on tumor immune microenvironment. Chromatin immunoprecipitation and RNA transcriptome sequencing analysis were both performed in GLIS1-knock down of CD8+ T cells. RESULTS: GLIS1 was upregulated in exhausted CD8+ T cells in HCC. GLIS1 downregulation in CD8+ T cells repressed cancer development, elevated the infiltrate ability of CD8+ T cells, mitigated CD8+ T cell exhaustion and ameliorated the anti-PD1 reaction of CD8+ T cells in HCC. The causal link beneath this included transcriptional regulation of SGK1-STAT3-PD1 pathway by GLIS1, thereby maintaining the abundant PD1 expression on the surface of CD8+ T cells. CONCLUSION: Our study revealed that GLIS1 promoted CD8+ T cell exhaustion in HCC through transcriptional regulating SGK1-STAT3-PD1 pathway. Downregulating the expression of GLIS1 in CD8+ T cells exerted an effect with anti-PD1 treatment synergistically, revealing a prospective method for HCC immune therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Linfócitos T CD8-Positivos , Leucócitos Mononucleares/metabolismo , Camundongos Endogâmicos C57BL , Microambiente Tumoral , Fator de Transcrição STAT3/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo
3.
Acta Biomater ; 157: 337-351, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36509402

RESUMO

Transarterial chemoembolization (TACE) is an image-guided locoregional therapy used for the treatment of patients with primary hepatocellular carcinoma (HCC). However, conventional TACE formulations such as epirubicin-lipiodol emulsion are rapidly dissociated due to the instability of the emulsion, resulting in insufficient local drug concentrations in the target tumor. To overcome these limitations, we used biodegradable Idarubicin loaded microspheres (BILMs), which were prepared from gelatin and carrageenan and could be loaded with Idarubicin (IDA-MS). The morphology and the ability to load and release IDA of BILMs were characterized in vitro. We evaluated tumor changes and side effects after TACE treatment with IDA-MS in VX2 rabbit and C57BL/6 mice HCC models. In addition, the effect of IDA-MS on the tumor immune microenvironment of HCC tumors was elucidated via mass spectrometry and immunohistochemistry. Result showed that IDA-MS was developed as a new TACE formulation to overcome the poor delivery of drugs due to rapid elimination of the anticancer drug into the systemic circulation. We demonstrated in rabbits and mice HCC models that TACE with IDA-MS resulted in significant tumor shrinkage and no more severe adverse events than those observed in the IDA group. TACE with IDA-MS could also significantly enhance the sensitivity of anti-PD1 immunotherapy, improve the expression of CD8+ T cells, and activate the tumor immune microenvironment in HCC. This study provides a new approach for TACE therapy and immunotherapy and illuminates the future of HCC treatment. STATEMENT OF SIGNIFICANCE: Conventional transarterial chemoembolization (TACE) formulations are rapidly dissociated due to the instability of the emulsion, resulting in insufficient local drug concentrations in hepatocellular carcinoma (HCC). To overcome these limitations, we used biodegradable microspheres called BILMs, which could be loaded with Idarubicin (IDA-MS). We demonstrated in rabbits and mice HCC models that TACE with IDA-MS resulted in significant tumor shrinkage and no more severe adverse events than those observed in the IDA group. TACE with IDA-MS could also significantly enhance the sensitivity of anti-PD1 immunotherapy, improve the expression of CD8+ T cells, and activate the tumor immune microenvironment in HCC. This study provides a new approach for TACE therapy and immunotherapy and illuminates the future of HCC treatment.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Coelhos , Animais , Camundongos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Idarubicina/farmacologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Microesferas , Linfócitos T CD8-Positivos/patologia , Emulsões , Resultado do Tratamento , Quimioembolização Terapêutica/métodos , Camundongos Endogâmicos C57BL , Imunoterapia , Microambiente Tumoral
4.
Cancer Cell Int ; 22(1): 312, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224624

RESUMO

BACKGROUND: Midazolam (MDZ) is an anaesthetic that is widely used for anxiolysis and sedation. More recently, MDZ has also been described to be related to the outcome of various types of carcinomas. However, how MDZ influences the progression of hepatocellular carcinoma (HCC) and its effects on the biological function and tumour immune microenvironment of this type of tumour remain unknown. METHODS: The effects of MDZ on the proliferation, invasion, and migration of HCC cell lines were examined in vitro using the Cell Counting Kit 8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU), Transwell, and wound healing assays. Additionally, western blotting was employed to confirm that PD-L1 was expressed. Chromatin immunoprecipitation-seq (ChIP-seq) analysis was used to pinpoint the transcriptional regulation regions of NF-κB and programmed death-ligand 1 (PD-L1). A C57BL/6 mouse model was used to produce subcutaneous HCC tumors in order to evaluate the in vivo performance of MDZ. Mass spectrometry was also used to assess changes in the tumour immunological microenvironment following MDZ injection. RESULTS: The HCC-LM3 and Hep-3B cell lines' proliferation, invasion, and migration were controlled by MDZ, according to the results of the CCK8, EdU, Transwell, and wound healing assays. PD-L1 expression was shown by ChIP-seq analysis to be boosted by NF-κB, and by Western blotting analysis, it was shown that MDZ downregulated the expression of NF-κB. Additionally, in vivo tests revealed that intraperitoneal MDZ injections reduced HCC tumor development and enhanced the effectiveness of anti-PD-1 therapy. The CD45+ immune cell proportions were higher in the MDZ group than in the PBS group, according to the mass spectrometry results. Injection of MDZ resulted in a decrease in the proportions of CD4+ T cells, CD8+ T cells, natural killer (NK) cells, monocytes, Tregs, and M2 macrophages and a rise in the proportion of dendritic cells. Additionally, the concentrations of the cytokines IFN-g and TNF-a were noticeably raised whereas the concentrations of the CD8+ T-cell fatigue markers ICOS, TIGIT, and TIM3 were noticeably lowered. CONCLUSION: According to this study, MDZ inhibited the progression of HCC by inhibiting the NF-κB pathway and reducing the exhaustion of CD8+ T cells. In clinical practice, MDZ combined with anti-PD-1 therapy might contribute to synergistically improving the antitumor efficacy of HCC treatment.

5.
Redox Biol ; 56: 102463, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36108528

RESUMO

Single-cell RNA-sequencing (scRNA-seq) presents better insights into cell behavior in the context of a complex tumor microenvironment by profiling single-cell populations. However, the mechanisms underlying treatment failure in hepatocellular carcinoma (HCC) are poorly understood. In this study, we performed deep scRNA-seq on immune cells under the isolation in peripheral blood, cancer tissues, and nearby common tissues of four HCC cases and two non-cancer controls, and 212,494 cells were included in the analysis. We identified distinct immune cell subtypes, enriched pathways for differential genes, and delineated associated developmentally relevant trajectories. APOC1 was found over-expressed in tumor-associated macrophages (TAMs) of HCC tissues than in normal tissues. Inhibition of APOC1 reversed the M2 phenotype to the M1 phenotype via the ferroptosis pathway in TAMs from HCC. Tumors in APOC1 -/- C57BL/6 mice demonstrated consistent attenuation compared to wild-type (WT) mice. Mass spectrometry results revealed that the relative proportion of M2 macrophages, B cells, and CD4+ T cells in the APOC1 -/- group exhibited a downward expression compared with the WT group, whereas CD8+ T cells, M1 macrophages, and NK cells exhibited an upward trend. Finally, APOC1 was found to be negatively correlated with the expression of PD1/PD-L1 in human HCC samples. In conclusion, the present study demonstrated that inhibiting APOC1 can promote the transformation of M2 macrophages into M1 macrophages via the ferroptosis pathway, thereby reshaping the tumor immune microenvironment and improving the anti-PD1 immunotherapy for HCC, providing a new strategy for improving the therapeutic effect of anti-PD1, and bringing new hope to HCC patients.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Animais , Apolipoproteína C-I , Antígeno B7-H1 , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Ferroptose/genética , Humanos , Imunoterapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA , Análise de Sequência de RNA , Microambiente Tumoral
6.
Front Immunol ; 13: 876048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812439

RESUMO

Immunotherapy treatments, particularly immune checkpoint blockade, can result in benefits in clinical settings. But many pre-clinical and clinical studies have shown that resistance to anti-PD1 therapy frequently occurs, leading to tumor recurrence and treatment failure, including in patients with hepatocellular carcinoma (HCC). In this study, 10 patients with HCC were remedied with anti-PD1, and pre-treatment biopsy samples were sequenced for 289 nanostring panel RNA to compare responsive and non-responsive tumors to identify possible pretreatment biomarkers or targets of anti-PD1 therapeutic responses. Fortunately, the expression of ß-Glucuronidase (GUSB) in the non-responding tumors was found to be remarkably higher than that in responding tumors. Results of the cell counting kit 8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU), transwell, wound healing test, and flow cytometry showed that GUSB facilitated proliferation, invasion, as well as migration of human HCC cells and downregulated PD-L1 expression by promoting miR-513a-5p. Additionally, as a GUSB inhibitor, amoxapine can reduce the progression of human HCC cells, and was an effective treatment for HCC and improved the sensitivity of anti-PD1 therapy. In summary, this study reveals that increased GUSB downregulates PD-L1 expression by promoting miR-513a-5p, leading to primary resistance to anti-PD1 treatment in HCC, and amoxapine enhances the sensitivity of anti-PD1 therapy by inhibiting GUSB, providing a new strategy and method for improving the efficacy of anti-PD1 therapy and bringing new prospects for therapy of HCC.


Assuntos
Amoxapina , Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Antígeno B7-H1/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Glucuronidase , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , Recidiva Local de Neoplasia , Receptor de Morte Celular Programada 1/metabolismo
7.
J Ethnopharmacol ; 156: 175-81, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25219605

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Huang-Lian-Jie-Du-Decotion (HLJDD), an important traditional Chinese medicine formula, has been used for various diseases in clinical practice, and thus has high potential to induce cytochrome P450 (CYP) isoenzymes/P-glycoprotein (P-gp) mediated herb-drug interactions (HDIs) with other co-administered drugs. The purpose of this study was to investigate the in vitro effects of multiple extracts including aqueous extracts, total flavonoids, iridoids, alkaloids from HLJDD on the activities of CYPs in rats (CYP1A2, CYP2C6, CYP2D2, CYP2E1 and CYP3A1) and P-gp, and then to predict potential interactions with co-administered drugs. MATERIALS AND METHODS: The effects of the four extracts from HLJDD on the CYPs activity were evaluated in rat liver microsomes incubation system, and then determined by LC-MS/MS-based CYPs probe substrate assay. Caco-2 cell monolayer was used to investigate the effect of the four extracts on the efflux of Rhodamine 123 to evaluate their influences on P-gp activity. RESULTS: The results show that total flavonoids and alkaloids exibited strong inhibition on rat CYP isoenzymes activities. Total flavonoids exhibited different inhibitory effects on CYPs activities with an order of CYP3A1>CYP2C6>CYP2E1>CYP1A2>CYP2D2, and the values of IC50 were 4.24, 8.16, 17.56, 19.03, 29.51 µg/mL, respectively. Total alkaloids possessed similar inhibition on CYPs and could strongly inhibit the activity of CYP2D2 (IC50=2.38 µg/mL), CYP3A1 (IC50=2.61 µg/mL), CYP2E1 (IC50=22.35 µg/mL), CYP1A2 (IC50=23.2 µg/mL) and CYP2C6 (IC50=43.09 µg/mL). Moderate degree of inhibition on CYPs activities was observed in aqueous and total iridoids extracts. Results from transport assay revealed that total flavonoids and alkaloids exhibited significant inhibitory effect on P-gp activity as evidenced by strong inhibition on the efflux of Rhodamine-123 with IC50 of 104.6 and 82.6 µg/mL. But aqueous extract showed weak and iridoids had negligible effect on P-gp activity. CONCLUSIONS: This study clearly demonstrated that total flavonoids and alkaloids from HLJDD can significantly inhibit the activities of CYPs and P-gp, which should be taken into consideration to predict any potential HDIs when HLJDD and its bioactive components are co-administered with other therapeutic drugs metabolized by CYPs or transported by P-gp.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Inibidores das Enzimas do Citocromo P-450/química , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Isoenzimas/antagonistas & inibidores , Alcaloides/química , Alcaloides/farmacologia , Animais , Células CACO-2 , Linhagem Celular Tumoral , Flavonoides/química , Flavonoides/farmacologia , Humanos , Iridoides/química , Iridoides/farmacologia , Masculino , Medicina Tradicional Chinesa/métodos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA