RESUMO
The targeted delivery of therapeutic agents is a promising approach to enhance the efficacy and reduce the toxicity of cancer treatments. Understanding the intracellular endocytic mechanisms of a cell penetrating peptide (CPP) in an acidic environment is important for targeted delivery of macromolecules to tumours. In this study, we constructed a pH-sensitive CPP-based delivery system for the intracellular delivery of macromolecules. A pH-sensitive CPP, HBHAc, was fused with a model protein, enhanced green fluorescent protein (EGFP), through recombinant DNA technology. We found that is essential that negatively charged proteoglycans on the cell surface interact with HBHAc-EGFP prior to the cellular uptake of HBHAc-EGFP. The uptake was significantly restricted at 4 °C under pH conditions of both 6.5 and 7.5. The increased positive charge of HBHAc-EGFP under the acidic condition leads to a pH-dependent cellular uptake, and we observed that the internalisation of HBHAc-EGFP was significantly higher at pH 6.5 than at pH 7.5 (p < .05). Thus, with pH-sensitive activity, HBHAc is expected to improve tumour-targeted intracellular protein delivery. Moreover, our findings provide a new insight that the endocytic pathway may change under different pH conditions and suggest that this unique phenomenon benefits pH-sensitive drug delivery for tumour therapy.