Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMB Rep ; 56(11): 606-611, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37817441

RESUMO

The main protease (Mpro) of SARS-CoV-2 cleaves 11 sites of iral polypeptide chains and generates essential non-structural proteins for viral replication. Mpro is an important drug target against COVID-19. In this study, we developed a real-time fluorometric turn-on assay system to evaluate Mpro proteolytic activity for a substrate peptide between NSP4 and NSP5. It produced reproducible and reliable results suitable for HTS inhibitor assays. Thus far, most inhibitors against Mpro target the active site for substrate binding. Mpro exists as a dimer, which is essential for its activity. We investigated the potential of the Mpro dimer interface to act as a drug target. The dimer interface is formed of domain II and domain III of each protomer, in which N-terminal ten amino acids of the domain I are bound in the middle as a sandwich. The N-terminal part provides approximately 39% of the dimer interface between two protomers. In the real-time fluorometric turn-on assay system, peptides of the N-terminal ten amino acids, N10, can inhibit the Mpro activity. The dimer interface could be a prospective drug target against Mpro. The N-terminal sequence can help develop a potential inhibitor. [BMB Reports 2023; 56(11): 606-611].


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Peptídeos/farmacologia , Aminoácidos , Peptídeo Hidrolases , Simulação de Acoplamento Molecular
2.
Archaea ; 2017: 5395293, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28536498

RESUMO

Thermococcus onnurineus NA1 is an anaerobic archaeon usually found in a deep-sea hydrothermal vent area, which can use elemental sulfur (S0) as a terminal electron acceptor for energy. Sulfur, essential to many biomolecules such as sulfur-containing amino acids and cofactors including iron-sulfur cluster, is usually mobilized from cysteine by the pyridoxal 5'-phosphate- (PLP-) dependent enzyme of cysteine desulfurase (CDS). We determined the crystal structures of CDS from Thermococcus onnurineus NA1 (ToCDS), which include native internal aldimine (NAT), gem-diamine (GD) with alanine, internal aldimine structure with existing alanine (IAA), and internal aldimine with persulfide-bound Cys356 (PSF) structures. The catalytic intermediate structures showed the dihedral angle rotation of Schiff-base linkage relative to the PLP pyridine ring. The ToCDS structures were compared with bacterial CDS structures, which will help us to understand the role and catalytic mechanism of ToCDS in the archaeon Thermococcus onnurineus NA1.


Assuntos
Proteínas Arqueais/química , Liases de Carbono-Enxofre/química , Thermococcus/enzimologia , Conformação Proteica
3.
J Biomed Sci ; 24(1): 9, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28143470

RESUMO

Autologous adipose stromal vascular fractions (SVFs) containing adipose tissue-derived stem cells (ASCs) are currently being used in clinical settings for various orthopedic applications for human patients. Due to its potential capability of regenerating cartilage, bone, and tendons, autologous adipose SVFs are being tried in treating patients with osteoarthritis (OA), chondromalacia, meniscus tear, osteonecrosis of the femoral head, and tendon injuries. Here, we have reviewed available human clinical studies with regard to patient applications of autologous adipose SVF containing ASCs, specifically assessing effectiveness and safety in the field of orthopedic disorders. All studies reviewed in this article presents potential benefits of autologous adipose SVF in various orthopedic applications without any serious side effects.


Assuntos
Tecido Adiposo/transplante , Doenças Ósseas/terapia , Doenças das Cartilagens/terapia , Traumatismos dos Tendões/terapia , Animais , Autoenxertos , Cartilagem/metabolismo , Cartilagem/patologia , Humanos , Células Estromais/transplante , Tendões/metabolismo , Tendões/patologia
4.
J Antimicrob Chemother ; 72(3): 735-743, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27999057

RESUMO

Objectives: : Investigation into the adenylylation of the nucleophilic serine in AmpC BER and CMY-10 extended-spectrum class C ß-lactamases. Methods: : The formation and the stability of the adenylate adduct were examined by X-ray crystallography and MS. Inhibition assays for kinetic parameters were performed by monitoring the hydrolytic activity of AmpC BER and CMY-10 using nitrocefin as a reporter substrate. The effect of adenosine 5'-(P-acetyl)monophosphate (acAMP) on the MIC of ceftazidime was tested with four Gram-negative clinical isolates. Results: : The crystal structures and MS analyses confirmed the acAMP-mediated adenylylation of the nucleophilic serine in AmpC BER and CMY-10. acAMP inhibited AmpC BER and CMY-10 through the adenylylation of the nucleophilic serine, which could be modelled as a two-step mechanism. The initial non-covalent binding of acAMP to the active site is followed by the covalent attachment of its AMP moiety to the nucleophilic serine. The inhibition efficiencies ( k inact / K I ) of acAMP against AmpC BER and CMY-10 were determined to be 320 and 140 M -1 s -1 , respectively. The combination of ceftazidime and acAMP reduced the MIC of ceftazidime against the tested bacteria. Conclusions: : Our structural and kinetic studies revealed the detailed mechanism of adenylylation of the nucleophilic serine and may serve as a starting point for the design of novel class C ß-lactamase inhibitors on the basis of the nucleotide scaffold.


Assuntos
Antibacterianos/farmacologia , Serina/química , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química , beta-Lactamases/metabolismo , Proteínas de Bactérias/metabolismo , Ceftazidima/farmacologia , Cristalografia por Raios X , Cinética , Testes de Sensibilidade Microbiana
5.
J Agric Food Chem ; 64(39): 7307-7314, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27616570

RESUMO

Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight on rice; this species is one of the most destructive pathogenic bacteria in rice cultivation worldwide. Peptide deformylase (PDF) catalyzes the removal of the N-formyl group from the N-terminus of newly synthesized polypeptides in bacterial cells and is an important target to develop antibacterial agents. We determined crystal structures of Xoo PDF (XoPDF) at up to 1.9 Å resolution, which include apo, two substrate-bound (methionine-alanine or methionine-alanine-serine), an inhibitor-bound (actinonin), and six fragment chemical-bound structures. Six fragment chemical compounds were bound in the substrate-binding pocket. The fragment chemical-bound structures were compared to the natural PDF inhibitor actinonin-bound structure. The fragment chemical molecules will be useful to design an inhibitor specific to XoPDF and a potential pesticide against Xoo.


Assuntos
Amidoidrolases/química , Proteínas de Bactérias/química , Xanthomonas/enzimologia , Antibacterianos , Cristalografia por Raios X , Regulação Bacteriana da Expressão Gênica , Ácidos Hidroxâmicos/química , Oryza/microbiologia , Peptídeos/química , Doenças das Plantas/microbiologia , Relação Estrutura-Atividade
6.
J Bioenerg Biomembr ; 48(6): 557-567, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27683242

RESUMO

Mycobacterium tuberculosis represents one of the world's most devastating infectious agents - with one third of the world's population infected and 1.5 million people dying each year from this deadly pathogen. As part of an effort to identify targets for therapeutic intervention, we carried out the kinetic characterization of the product of gene rv1700 of M. tuberculosis. Based on its sequence and its structure, the protein had been tentatively identified as a pyrophosphohydrolase specific for adenosine diphosphate ribose (ADPR), a compound involved in various pathways including oxidative stress response and tellurite resistance. In this work we carry out a kinetic, mutational and structural investigation of the enzyme, which provides a full characterization of this Mt-ADPRase. Optimal catalytic rates were achieved at alkaline pH (7.5-8.5) with either 0.5-1 mM Mg2+ or 0.02-1 mM Mn2+. K m and k cat values for hydrolysis of ADPR with Mg2+ ions are 200 ± 19 µM and 14.4 ± 0.4 s-1, and with Mn2+ ions are 554 ± 64 µM and 28.9 ± 1.4 s-1. Four residues proposed to be important in the catalytic mechanism of the enzyme were individually mutated and the kinetics of the mutant enzymes were characterized. In the four cases, the K m increased only slightly (2- to 3-fold) but the k cat decreased significantly (300- to 1900-fold), confirming the participation of these residues in catalysis. An analysis of the sequence and structure conservation patterns in Nudix ADPRases permits an unambiguous identification of members of the family and provides insight into residues involved in catalysis and their participation in substrate recognition in the Mt-ADPRase.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Mycobacterium tuberculosis/enzimologia , Pirofosfatases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Hidrolases/metabolismo , Cinética , Mutação , Mycobacterium tuberculosis/genética , Pirofosfatases/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
7.
Acta Crystallogr D Struct Biol ; 72(Pt 1): 12-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26894530

RESUMO

D-Alanyl-D-alanine is an essential precursor of bacterial peptidoglycan and is synthesized by D-alanine-D-alanine ligase (DDL) with hydrolysis of ATP; this reaction makes DDL an important drug target for the development of antibacterial agents. Five crystal structures of DDL from Yersinia pestis (YpDDL) were determined at 1.7-2.5 Å resolution: apo, AMP-bound, ADP-bound, adenosine 5'-(ß,γ-imido)triphosphate-bound, and D-alanyl-D-alanine- and ADP-bound structures. YpDDL consists of three domains, in which four loops, loop 1, loop 2 (the serine loop), loop 3 (the ω-loop) and loop 4, constitute the binding sites for two D-alanine molecules and one ATP molecule. Some of them, especially the serine loop and the ω-loop, show flexible conformations, and the serine loop is mainly responsible for the conformational change in substrate nucleotide phosphates. Enzyme-kinetics assays were carried out for both the D-alanine and ATP substrates and a substrate-binding mechanism was proposed for YpDDL involving conformational changes of the loops.


Assuntos
Peptídeo Sintases/química , Yersinia pestis/enzimologia , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Cristalografia por Raios X , Dipeptídeos/metabolismo , Simulação de Acoplamento Molecular , Peptídeo Sintases/metabolismo , Conformação Proteica , Yersinia pestis/química , Yersinia pestis/metabolismo
8.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 10): 1368-71, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25286941

RESUMO

Multidrug-resistant Acinetobacter baumannii (Ab) has emerged as a leading nosocomial pathogen because of its resistance to most currently available antibiotics. Cystathionine ß-lyase (CBL), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, catalyzes the second step in the transsulfuration pathway, which is essential for the metabolic interconversion of the sulfur-containing amino acids homocysteine and methionine. The enzymes of the transsulfuration pathway are considered to be attractive drug targets owing to their specificity to microbes and plants. As a potential target for the development of novel antibacterial drugs, the AbCBL protein was expressed, purified and crystallized. An AbCBL crystal diffracted to 1.57 Šresolution and belonged to the trigonal space group P3112, with unit-cell parameters a = b = 102.9, c = 136.5 Å. The asymmetric unit contained two monomers, with a corresponding VM of 2.3 Å(3) Da(-1) and a solvent content of 46.9%.


Assuntos
Acinetobacter baumannii/enzimologia , Proteínas de Bactérias/química , Liases/química , Sequência de Aminoácidos , Proteínas de Bactérias/biossíntese , Cristalização , Cristalografia por Raios X , Escherichia coli , Expressão Gênica , Liases/biossíntese , Dados de Sequência Molecular , Fosfato de Piridoxal/química
9.
Arch Biochem Biophys ; 545: 92-9, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24440607

RESUMO

D-Alanine-D-alanine ligase (DDL) catalyzes the biosynthesis of d-alanyl-d-alanine, an essential bacterial peptidoglycan precursor, and is an important drug target for the development of antibacterials. We determined four different crystal structures of DDL from Xanthomonas oryzae pv. oryzae (Xoo) causing Bacteria Blight (BB), which include apo, ADP-bound, ATP-bound, and AMPPNP-bound structures at the resolution between 2.3 and 2.0 Å. Similarly with other DDLs, the active site of XoDDL is formed by three loops from three domains at the center of enzyme. Compared with d-alanyl-d-alanine and ATP-bound TtDDL structure, the γ-phosphate of ATP in XoDDL structure was shifted outside toward solution. We swapped the ω-loop (loop3) of XoDDL with those of Escherichia coli and Helicobacter pylori DDLs, and measured the enzymatic kinetics of wild-type XoDDL and two mutant XoDDLs with the swapped ω-loops. Results showed that the direct interactions between ω-loop and other two loops are essential for the active ATP conformation for D-ala-phosphate formation.


Assuntos
Oryza/microbiologia , Peptídeo Sintases/química , Xanthomonas/enzimologia , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Peptídeo Sintases/metabolismo , Ligação Proteica , Alinhamento de Sequência , Xanthomonas/química , Xanthomonas/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-24100562

RESUMO

Campylobacter jejuni is one of the major foodborne pathogens causing human infection. Peptide deformylase, a metallohydrolase, catalyzes the deformylation of N-formylated methionine in newly synthesized polypeptides in prokaryotes and some eukaryotic organelles. The deformylation process is an essential step in protein synthesis and has attracted much attention as a potential target for the development of novel antibacterial agents. Here, the cloned codon-optimized def gene from C. jejuni was synthesized and the protein was expressed, purified and crystallized. C. jejuni peptide deformylase crystals obtained at pH 7.0 and pH 6.5 diffracted to 2.9 Šresolution and belonged to the trigonal space group R3, with unit-cell parameters a=b=105.7, c=58.0 Å. One monomer existed in the asymmetric unit, with a corresponding VM of 3.1 Å3 Da(-1) and a solvent content of 60.4%.


Assuntos
Amidoidrolases/química , Campylobacter jejuni/enzimologia , Amidoidrolases/genética , Campylobacter jejuni/genética , Cristalização , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Humanos
11.
Oncol Lett ; 4(6): 1203-1208, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23226797

RESUMO

Etoposide (ETP) treatment of ataxia telangiectasia mutated (ATM) and Rad3-related protein (ATR)-, topoisomerase-binding protein-1 (TopBP1) and human MutY homolog (hMYH)-depleted cells results in a significant reduction in apoptotic signaling. The association between ATR or TopBP1 and hMYH increased following ETP treatment. In hMYH knockdown cells, the interaction between ATR and TopBP1 decreased following ETP treatment. We suggest that hMYH functions as a sensor of ETP-induced apoptosis. The results suggest that in the absence of hMYH, cells are unable to recognize the damage signal and the ATR pathway is not activated.

12.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 12): 1515-7, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23192036

RESUMO

Cystathionine γ-synthase (CGS) catalyzes the first step in the transsulfuration pathway leading to the formation of cystathionine from O-succinylhomoserine and L-cysteine through a γ-replacement reaction. As an antibacterial drug target against Xanthomonas oryzae pv. oryzae (Xoo), CGS from Xoo (XometB) was cloned, expressed, purified and crystallized. The XometB crystal diffracted to 2.4 Šresolution and belonged to the tetragonal space group I4(1), with unit-cell parameters a=b=165.4, c=241.7 Å. There were four protomers in the asymmetric unit, with a corresponding solvent content of 73.9%.


Assuntos
Proteínas de Bactérias/química , Carbono-Oxigênio Liases/química , Xanthomonas/enzimologia , Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Liases/metabolismo , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Xanthomonas/efeitos dos fármacos , Xanthomonas/metabolismo
13.
Mol Cells ; 33(1): 19-25, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22134719

RESUMO

Xanthomonas oryzae pv. oryzae (Xoo) is a plant bacterial pathogen that causes bacterial blight (BB) disease, resulting in serious production losses of rice. The crystal structure of malonyl CoA-acyl carrier protein transacylase (XoMCAT), encoded by the gene fabD (Xoo0880) from Xoo, was determined at 2.3 Å resolution in complex with N-cyclohexyl-2-aminoethansulfonic acid. Malonyl CoA-acyl carrier protein transacylase transfers malonyl group from malonyl CoA to acyl carrier protein (ACP). The transacylation step is essential in fatty acid synthesis. Based on the rationale, XoMCAT has been considered as a target for antibacterial agents against BB. Protein-protein interaction between XoMCAT and ACP was also extensively investigated using computational docking, and the proposed model revealed that ACP bound to the cleft between two XoMCAT subdomains.


Assuntos
Proteína de Transporte de Acila/metabolismo , Proteína de Transporte de Acila S-Maloniltransferase/química , Proteínas de Bactérias/química , Malonil Coenzima A/metabolismo , Xanthomonas/enzimologia , Proteína de Transporte de Acila S-Maloniltransferase/genética , Proteína de Transporte de Acila S-Maloniltransferase/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalização , Dados de Sequência Molecular
14.
PLoS One ; 6(10): e25226, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21984906

RESUMO

BACKGROUND: UDP-glucose dehydrogenase (UGDH) is the sole enzyme that catalyzes the conversion of UDP-glucose to UDP-glucuronic acid. The product is used in xenobiotic glucuronidation in hepatocytes and in the production of proteoglycans that are involved in promoting normal cellular growth and migration. Overproduction of proteoglycans has been implicated in the progression of certain epithelial cancers, while inhibition of UGDH diminished tumor angiogenesis in vivo. A better understanding of the conformational changes occurring during the UGDH reaction cycle will pave the way for inhibitor design and potential cancer therapeutics. METHODOLOGY: Previously, the substrate-bound of UGDH was determined to be a symmetrical hexamer and this regular symmetry is disrupted on binding the inhibitor, UDP-α-D-xylose. Here, we have solved an alternate crystal structure of human UGDH (hUGDH) in complex with UDP-glucose at 2.8 Å resolution. Surprisingly, the quaternary structure of this substrate-bound protein complex consists of the open homohexamer that was previously observed for inhibitor-bound hUGDH, indicating that this conformation is relevant for deciphering elements of the normal reaction cycle. CONCLUSION: In all subunits of the present open structure, Thr131 has translocated into the active site occupying the volume vacated by the absent active water and partially disordered NAD+ molecule. This conformation suggests a mechanism by which the enzyme may exchange NADH for NAD+ and repolarize the catalytic water bound to Asp280 while protecting the reaction intermediates. The structure also indicates how the subunits may communicate with each other through two reaction state sensors in this highly cooperative enzyme.


Assuntos
Uridina Difosfato Glucose Desidrogenase/química , Uridina Difosfato Glucose Desidrogenase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Biocatálise , Glucose/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , NAD/metabolismo , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Difosfato de Uridina/metabolismo
15.
Appl Microbiol Biotechnol ; 89(3): 635-44, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20852996

RESUMO

Whole-genome sequence analysis of Bacillus halodurans ATCC BAA-125 revealed an isomerase gene (rhaA) encoding an L-rhamnose isomerase (L-RhI). The identified L-RhI gene was cloned from B. halodurans and over-expressed in Escherichia coli. DNA sequence analysis revealed an open reading frame of 1,257 bp capable of encoding a polypeptide of 418 amino acid residues with a molecular mass of 48,178 Da. The molecular mass of the purified enzyme was estimated to be ∼48 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 121 kDa by gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme had an optimal pH and temperature of 7 and 70°C, respectively, with a k(cat) of 8,971 min⁻¹ and a k(cat)/K(m) of 17 min⁻¹mM⁻¹ for L-rhamnose. Although L-RhIs have been characterized from several other sources, B. halodurans L-RhI is distinguished from other L-RhIs by its high temperature optimum (70°C) with high thermal stability of showing 100% activity for 10 h at 60°C. The half-life of the enzyme was more than 900 min and ∼25 min at 60°C and 70°C, respectively, making B. halodurans L-RhI a good choice for industrial applications. This work describes one of the most thermostable L-RhI characterized thus far.


Assuntos
Aldose-Cetose Isomerases/metabolismo , Bacillus/enzimologia , Ramnose/metabolismo , Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/genética , Bacillus/genética , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Escherichia coli/genética , Expressão Gênica , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Fases de Leitura Aberta , Multimerização Proteica , Análise de Sequência de DNA , Temperatura
16.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 64(Pt 11): 1031-3, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18997334

RESUMO

Peptide deformylase (PDF) catalyzes the removal of the N-formyl group from the N-terminus of newly synthesized polypeptides; this process is crucial for cell survival. As it is an antibacterial drug target against Xanthomonas oryzae pv. oryzae (Xoo), PDF from Xoo was cloned, expressed, purified and crystallized. Native PDF crystals diffracted to 2.7 A resolution and belonged to the hexagonal space group P6(1)22, with unit-cell parameters a = b = 59.0, c = 266.3 A. One monomer is present in the asymmetric unit, with a corresponding crystal volume per protein weight of 3.50 A(3) Da(-1) and a solvent content of 64.9%.


Assuntos
Amidoidrolases/química , Proteínas de Bactérias/química , Xanthomonas/enzimologia , Amidoidrolases/genética , Proteínas de Bactérias/genética , Cristalização , Cristalografia por Raios X , Dados de Sequência Molecular , Oryza/microbiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-18678949

RESUMO

Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight of rice (Oryza sativa L.), one of the most devastating diseases of rice in most rice-growing countries. XometC, a cystathionine gamma-lyase (CGL) like protein that is an antibacterial drug-target protein against Xoo, was cloned, expressed, purified and crystallized. CGL catalyzes the second step in the reverse-transsulfuration pathway, which is essential for the metabolic interconversion of the sulfur-containing amino acids cysteine and methionine. Crystals of two different shapes, plate-shaped and pyramid-shaped, diffracted to 2.9 and 3.2 A resolution and belonged to the primitive orthogonal space group P2(1)2(1)2(1) and the tetragonal space group P4(1) (or P4(3)), with unit-cell parameters a = 73.0, b = 144.9, c = 152.3 A and a = b = 78.2, c = 300.7 A, respectively. For the P2(1)2(1)2(1) crystals, three or four monomers exist in the asymmetric unit with a corresponding V(M) of 3.02 or 2.26 A(3) Da(-1) and a solvent content of 59.3 or 45.7%. For the P4(1) (or P4(3)) crystals, four or five monomers exist in the asymmetric unit with a corresponding V(M) of 2.59 or 2.09 A(3) Da(-1) and a solvent content of 52.5 or 40.6%.


Assuntos
Cistationina gama-Liase/química , Xanthomonas/enzimologia , Sequência de Bases , Clonagem Molecular , Cristalografia por Raios X , Cistationina gama-Liase/genética , Cistationina gama-Liase/isolamento & purificação , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA