Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurotherapeutics ; 20(3): 803-821, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36508119

RESUMO

Reactive glial cells are hallmarks of brain injury. However, whether these cells contribute to secondary inflammatory pathology and neurological deficits remains poorly understood. Lipocalin-2 (LCN2) has inflammatory and neurotoxic effects in various disease models; however, its pathogenic role in traumatic brain injury remains unknown. The aim of the present study was to investigate the expression of LCN2 and its role in neuroinflammation following brain injury. LCN2 expression was high in the mouse brain after controlled cortical impact (CCI) and photothrombotic stroke (PTS) injury. Brain levels of LCN2 mRNA and protein were also significantly higher in patients with chronic traumatic encephalopathy (CTE) than in normal subjects. RT-PCR and immunofluorescence analyses revealed that astrocytes were the major cellular source of LCN2 in the injured brain. Lcn2 deficiency or intracisternal injection of an LCN2 neutralizing antibody reduced CCI- and PTS-induced brain lesions, behavioral deficits, and neuroinflammation. Mechanistically, in cultured glial cells, recombinant LCN2 protein enhanced scratch injury-induced proinflammatory cytokine gene expression and inhibited Gdnf gene expression, whereas Lcn2 deficiency exerted opposite effects. Together, our results from CTE patients, rodent brain injury models, and cultured glial cells suggest that LCN2 mediates secondary damage response to traumatic and ischemic brain injury by promoting neuroinflammation and suppressing the expression of neurotropic factors.


Assuntos
Lesões Encefálicas , Acidente Vascular Cerebral , Animais , Camundongos , Astrócitos/metabolismo , Lesões Encefálicas/patologia , Lipocalina-2/genética , Lipocalina-2/metabolismo , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Doenças Neuroinflamatórias , Acidente Vascular Cerebral/metabolismo , Humanos
2.
Cells ; 9(7)2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660121

RESUMO

The oral multi-target kinase inhibitor regorafenib, which targets the oncogenic receptor tyrosine kinase (RTK), is an effective therapeutic for patients with advanced gastrointestinal stromal tumors or metastatic colorectal cancer. However, whether regorafenib treatment has beneficial effects on neuroinflammation and Alzheimer's disease (AD) pathology has not been carefully addressed. Here, we report the regulatory function of regorafenib in neuroinflammatory responses and AD-related pathology in vitro and in vivo. Regorafenib affected AKT signaling to attenuate lipopolysaccharide (LPS)-mediated expression of proinflammatory cytokines in BV2 microglial cells and primary cultured microglia and astrocytes. In addition, regorafenib suppressed LPS-induced neuroinflammatory responses in LPS-injected wild-type mice. In 5x FAD mice (a mouse model of AD), regorafenib ameliorated AD pathology, as evidenced by increased dendritic spine density and decreased Aß plaque levels, by modulating APP processing and APP processing-associated proteins. Furthermore, regorafenib-injected 5x FAD mice displayed significantly reduced tau phosphorylation at T212 and S214 (AT100) due to the downregulation of glycogen synthase kinase-3 beta (GSK3ß) activity. Taken together, our results indicate that regorafenib has beneficial effects on neuroinflammation, AD pathology, and dendritic spine formation in vitro and in vivo.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Peptídeos beta-Amiloides/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Linhagem Celular , Células Cultivadas , Espinhas Dendríticas/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Crescimento Neuronal , Fármacos Neuroprotetores/uso terapêutico , Compostos de Fenilureia/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/uso terapêutico , Transdução de Sinais , Proteínas tau/metabolismo
3.
J Neuroinflammation ; 16(1): 190, 2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31655606

RESUMO

BACKGROUND: The FDA-approved small-molecule drug dasatinib is currently used as a treatment for chronic myeloid leukemia (CML). However, the effects of dasatinib on microglial and/or astrocytic neuroinflammatory responses and its mechanism of action have not been studied in detail. METHODS: BV2 microglial cells, primary astrocytes, or primary microglial cells were treated with dasatinib (100 or 250 nM) or vehicle (1% DMSO) for 30 min or 2 h followed by lipopolysaccharide (LPS; 200 ng/ml or 1 µg/ml) or PBS for 5.5 h. RT-PCR, real-time PCR; immunocytochemistry; subcellular fractionation; and immunohistochemistry were subsequently conducted to determine the effects of dasatinib on LPS-induced neuroinflammation. In addition, wild-type mice were injected with dasatinib (20 mg/kg, intraperitoneally (i.p.) daily for 4 days or 20 mg/kg, orally administered (p.o.) daily for 4 days or 2 weeks) or vehicle (4% DMSO + 30% polyethylene glycol (PEG) + 5% Tween 80), followed by injection with LPS (10 mg/kg, i.p.) or PBS. Then, immunohistochemistry was performed, and plasma IL-6, IL-1ß, and TNF-α levels were analyzed by ELISA. RESULTS: Dasatinib regulates LPS-induced proinflammatory cytokine and anti-inflammatory cytokine levels in BV2 microglial cells, primary microglial cells, and primary astrocytes. In BV2 microglial cells, dasatinib regulates LPS-induced proinflammatory cytokine levels by regulating TLR4/AKT and/or TLR4/ERK signaling. In addition, intraperitoneal injection and oral administration of dasatinib suppress LPS-induced microglial/astrocyte activation, proinflammatory cytokine levels (including brain and plasma levels), and neutrophil rolling in the brains of wild-type mice. CONCLUSIONS: Our results suggest that dasatinib modulates LPS-induced microglial and astrocytic activation, proinflammatory cytokine levels, and neutrophil rolling in the brain.


Assuntos
Astrócitos/metabolismo , Dasatinibe/farmacologia , Lipopolissacarídeos/toxicidade , Microglia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Células Cultivadas , Dasatinibe/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/antagonistas & inibidores
4.
Cell Biochem Funct ; 37(3): 139-147, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30883865

RESUMO

Lin28, which is highly expressed during embryogenesis, has been shown to play an important role in cell growth and embryonic development. Meanwhile, Lin28 represses let-7 miRNA biogenesis and block pre-let-7 processing in the cytoplasm. The let-7 family of miRNAs is known to repress oncogenesis and cell cycle progression by targeting oncogenic genes and signalling pathways. Consequently, Lin28 acts as an oncogene by upregulating let-7 targets through the repression of let-7 biogenesis. A recent genome-wide association study (GWAS) showed that many genes related to Type 2 diabetes (T2D) are also oncogenes or cell cycle regulators. The role of Lin28 in mouse growth and glucose metabolism in metabolic-related tissues has also been studied. In these studies, whole-body Lin28 overexpression was found to promote glucose utilization and prevent weight gain by inhibiting let-7 biogenesis. Furthermore, Lin28 has been found to directly stimulate skeletal myogenesis and cell growth. Therefore, we determined whether similar effects mediated by Lin28a, which is essential for cell growth and proliferation, may also apply to pancreatic ß-cells. We found that overexpression of Lin28a protects pancreatic ß-cells from streptozotocin (STZ)-induced ß-cell destruction in vitro and in vivo. Furthermore, Lin28a-overexpressing transgenic (Tg) mice had higher insulin secretion in the presence of glucose than in control mice. Our findings suggest that the Lin28/let-7 axis is an important regulator of pancreatic ß-cell functions and that precise modulation of this axis may be helpful in treating metabolic diseases such as diabetes. SIGNIFICANCE OF THE STUDY: We demonstrate that Lin28a prevents pancreatic ß-cell death against streptozotocin (STZ)-induced ß-cell destruction in vitro and in vivo. Furthermore, Lin28a promotes cell survival and proliferation by activating the PI3K-Akt signalling pathway, which may be dependent on let-7 regulation. Taken together, our results imply that the Lin28a/let-7 axis is an important regulator of pancreatic ß-cell functions and that precise modulation of this axis may be helpful in treating metabolic diseases such as diabetes.


Assuntos
Diabetes Mellitus Experimental/prevenção & controle , Células Secretoras de Insulina/efeitos dos fármacos , Proteínas de Ligação a RNA/genética , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Proteínas de Ligação a RNA/metabolismo , Estreptozocina , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA