Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38349059

RESUMO

Standigm ASK™ revolutionizes healthcare by addressing the critical challenge of identifying pivotal target genes in disease mechanisms-a fundamental aspect of drug development success. Standigm ASK™ integrates a unique combination of a heterogeneous knowledge graph (KG) database and an attention-based neural network model, providing interpretable subgraph evidence. Empowering users through an interactive interface, Standigm ASK™ facilitates the exploration of predicted results. Applying Standigm ASK™ to idiopathic pulmonary fibrosis (IPF), a complex lung disease, we focused on genes (AMFR, MDFIC and NR5A2) identified through KG evidence. In vitro experiments demonstrated their relevance, as TGFß treatment induced gene expression changes associated with epithelial-mesenchymal transition characteristics. Gene knockdown reversed these changes, identifying AMFR, MDFIC and NR5A2 as potential therapeutic targets for IPF. In summary, Standigm ASK™ emerges as an innovative KG and artificial intelligence platform driving insights in drug target discovery, exemplified by the identification and validation of therapeutic targets for IPF.


Assuntos
Inteligência Artificial , Fibrose Pulmonar Idiopática , Humanos , Reconhecimento Automatizado de Padrão , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Pulmão/metabolismo
2.
Am J Physiol Endocrinol Metab ; 312(6): E495-E507, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28246104

RESUMO

Cushing's syndrome is caused by overproduction of the adrenocorticotropic hormone (ACTH), which stimulates the adrenal grand to make cortisol. Skeletal muscle wasting occurs in pathophysiological response to Cushing's syndrome. The forkhead box (FOX) protein family has been implicated as a key regulator of muscle loss under conditions such as diabetes and sepsis. However, the mechanistic role of the FOXO family in ACTH-induced muscle atrophy is not understood. We hypothesized that FOXO3a plays a role in muscle atrophy through expression of the E3 ubiquitin ligases, muscle RING finger protein-1 (MuRF-1), and atrogin-1 in Cushing's syndrome. For establishment of a Cushing's syndrome animal model, Sprague-Dawley rats were implanted with osmotic minipumps containing ACTH (40 ng·kg-1·day-1). ACTH infusion significantly reduced muscle weight. In ACTH-infused rats, MuRF-1, atrogin-1, and FOXO3a were upregulated and the FOXO3a promoter was targeted by the glucocorticoid receptor (GR). Transcriptional activity and expression of FOXO3a were significantly decreased by the GR antagonist RU486. Treatment with RU486 reduced MuRF-1 and atrogin-1 expression in accordance with reduced enrichment of FOXO3a and Pol II on the promoters. Knockdown of FOXO3a prevented dexamethasone-induced MuRF-1 and atrogin-1 expression. These results indicate that FOXO3a plays a role in muscle atrophy through expression of MuRF-1 and atrogin-1 in Cushing's syndrome.


Assuntos
Síndrome de Cushing/metabolismo , Modelos Animais de Doenças , Proteína Forkhead Box O3/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Síndrome de Cushing/patologia , Síndrome de Cushing/fisiopatologia , Proteína Forkhead Box O3/agonistas , Proteína Forkhead Box O3/antagonistas & inibidores , Proteína Forkhead Box O3/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter/efeitos dos fármacos , Glucocorticoides/farmacologia , Antagonistas de Hormônios/farmacologia , Masculino , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/agonistas , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/genética , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Interferência de RNA , Ratos Sprague-Dawley , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/metabolismo , Elementos de Resposta/efeitos dos fármacos , Proteínas Ligases SKP Culina F-Box/antagonistas & inibidores , Proteínas Ligases SKP Culina F-Box/genética , Proteínas com Motivo Tripartido/agonistas , Proteínas com Motivo Tripartido/antagonistas & inibidores , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética
3.
Korean J Physiol Pharmacol ; 20(5): 477-85, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27610034

RESUMO

CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

4.
Naunyn Schmiedebergs Arch Pharmacol ; 389(11): 1147-1157, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27447455

RESUMO

Combined oral contraceptive (COC) use is associated with increased risk of developing hypertension. Activation of the intrarenal renin-angiotensin system (RAS) and endothelial dysfunction play an important role in the development of hypertension. We tested the hypothesis that COC causes hypertension that is associated with endothelial dysfunction and upregulation of intrarenal angiotensin-converting enzyme 1 (Ace1) and angiotensin II type 1 receptor (At1r). Female Sprague-Dawley rats aged 12 weeks received (p.o.) olive oil (control) and a combination of 0.1 µg ethinylestradiol and 1.0 µg norgestrel (low COC) or 1.0 µg ethinylestradiol and 10.0 µg norgestrel (high COC) daily for 6 weeks. Blood pressure was recorded by tail cuff plethysmography. Expression of genes in kidney cortex was determined by quantitative real-time polymerase chain reaction. COC treatment led to increased blood pressure, circulating uric acid, C-reactive protein and plasminogen activator inhibitor-1, renal uric acid, and expression of renal Ace1 and At1r. COC treatment resulted in increased contractile responses to phenylephrine in endothelium-denuded aortic rings. Endothelium-dependent relaxation responses to acetylcholine, but not endothelium-independent relaxation responses to nitric oxide (NO) donation by sodium nitroprusside, were attenuated in COC-exposed rings. Impaired relaxation responses to acetylcholine were masked by the presence of NO synthase inhibitor (L-NAME) in the COC-exposed rings, whereas the responses to acetylcholine in the presence of selective cyclooxygenase-2 inhibitor (NS-398) were enhanced. These findings indicate that COC induces hypertension that is accompanied by endothelial dysfunction, upregulated intrarenal Ace1 and At1r expression, and elevated proinflammatory biomarkers.


Assuntos
Endotélio Vascular/fisiopatologia , Combinação Etinil Estradiol e Norgestrel , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Córtex Renal/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Vasoconstrição , Vasodilatação , Animais , Pressão Sanguínea , Anticoncepcionais Orais Combinados , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Epoprostenol/metabolismo , Feminino , Hipertensão/induzido quimicamente , Hipertensão/genética , Mediadores da Inflamação/metabolismo , Óxido Nítrico/metabolismo , Peptidil Dipeptidase A/metabolismo , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/genética , Regulação para Cima , Ácido Úrico/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
5.
Clin Exp Pharmacol Physiol ; 43(10): 995-1003, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27362706

RESUMO

A mutation in the mineralocorticoid receptor (MRS 810L ) leads to early-onset hypertension, which is markedly exacerbated during pregnancy. The mutation causes progesterone and even the MR antagonist spironolactone to become potent agonists. Thus, it is hard to control hypertension in patients harbouring this mutation. We hypothesized that histone deacetylase inhibition (HDACi), but not the MR antagonist spironolactone, attenuates atypical transcriptional activity of activating mutant MR (MRS 810L ). We established HEK293T cells overexpressing wild-type MR (MRWT ) or MRS 810L and determined their transcriptional activities by luciferase assay. Expression of MR target genes was measured by quantitative real-time PCR (qRT-PCR). Treatment with aldosterone increased the expression of MR target genes as well as the transcriptional activities in HEK293T cells transfected either with MRWT or MRS 810L . Treatment with either spironolactone or progesterone also increased the expression of MR target genes as well as transcriptional activity, but only in HEK293T cells transfected with MRS 810L . Spironolactone abolished the promoter activity stimulated by aldosterone in HEK293T cells transfected with MRWT . Treatment with HDAC inhibitors attenuated the transcriptional activity as well as the expression of MR target genes induced by aldosterone, spironolactone, or progesterone whether HEK293T cells were transfected with either MRWT or MRS 810L . These results indicate that HDACi, but not an MR antagonist spironolactone, attenuates atypical transcriptional activity of an activating mutant MR (MRS 810L ).


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Mutação/fisiologia , Receptores de Mineralocorticoides/fisiologia , Espironolactona/farmacologia , Transcrição Gênica/fisiologia , Aldosterona/farmacologia , Sequência de Aminoácidos , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Progesterona/farmacologia , Transcrição Gênica/efeitos dos fármacos
6.
Eur J Pharmacol ; 769: 48-54, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26506558

RESUMO

Clinical studies have shown that the use of combined oral contraceptive in pre-menopausal women is associated with fluid retention. However, the molecular mechanism is still elusive. We hypothesized that combined oral contraceptive (COC) ethinyl estradiol (EE) and norgestrel (N) synergistically activates mineralocorticoid receptor (MR) through histone code modifications. Twelve-week-old female Sprague-Dawley rats were treated with olive oil (control), a combination of 0.1µg EE and 1.0µg N (low COC) or 1.0µg EE and 10.0µg N (high COC) as well as 0.1 or 1.0µg EE and 1.0 or 10.0µg N daily for 6 weeks. Expression of MR target genes in kidney cortex was determined by quantitative real-time polymerase chain reaction. MR was quantified by western blot. Recruitment of MR and RNA polymerase II (Pol II) on promoters of target genes as well as histone code modifications was analyzed by chromatin immunoprecipitation assay. Treatment with COC increased renal cortical expression of MR target genes such as serum and glucocorticoid-regulated kinase 1 (Sgk-1), glucocorticoid-induced leucine zipper (Gilz), epithelial Na(+)channel (Enac) and Na(+)-K(+)-ATPase subunit α1 (Atp1a1). Although COC increased neither serum aldosterone nor MR expression in kidney cortex, it increased recruitment of MR and Pol II in parallel with increased H3Ac and H3K4me3 on the promoter regions of MR target genes. However, treatment with EE or N alone did not affect renal cortical expression of Sgk-1, Gilz, Enac or Atp1a1. These results indicate that COC synergistically activates MR through histone code modifications.


Assuntos
Anticoncepcionais Orais Combinados/farmacologia , Código das Histonas/efeitos dos fármacos , Receptores de Mineralocorticoides/química , Receptores de Mineralocorticoides/metabolismo , Animais , Sequência de Bases , Sinergismo Farmacológico , Etinilestradiol/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Imediatamente Precoces/genética , Córtex Renal/efeitos dos fármacos , Córtex Renal/metabolismo , Norgestrel/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico/efeitos dos fármacos , RNA Polimerase II/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/genética
7.
PLoS One ; 10(8): e0136801, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26305553

RESUMO

Histone deacetylases (HDACs) act as corepressors in gene transcription by altering the acetylation of histones, resulting in epigenetic gene silencing. We previously reported that HDAC3 acts as a coactivator of the mineralocorticoid receptor (MR). Although HDAC3 forms complexes with class II HDACs, their potential role in the transcriptional activity of MR is unclear. We hypothesized that HDAC4 of the class II family stimulates the transcriptional activity of MR. The expression of MR target genes was measured by quantitative real-time PCR. MR and RNA polymerase II recruitment to promoters of MR target genes was analyzed by chromatin immunoprecipitation. The association of MR with HDACs was investigated by co-immunoprecipitation. MR acetylation was determined with an anti-acetyl-lysine antibody after immunoprecipitation with an anti-MR antibody. Among the class II HDACs, HDAC4 interacted with both MR and HDAC3 after aldosterone stimulation. The nuclear translocation of HDAC4 was mediated by protein kinase A (PKA) and protein phosphatases (PP). The transcriptional activity of MR was significantly decreased by inhibitors of PKA (H89), PP1/2 (calyculin A), class I HDACs (MS-275), but not class II HDACs (MC1568). MR acetylation was increased by H89, calyculin A, and MS-275, but not by MC1568. Interaction between MR and HDAC3 was significantly decreased by H89, calyculin A, and HDAC4 siRNA. A non-genomic effect of MR via PKA and PP1/2 induced nuclear translocation of HDAC4 to facilitate the interaction between MR and HDAC3. Thus, we have uncovered a crucial role for a class II HDAC in the activation of MR-dependent transcription.


Assuntos
Histona Desacetilases/metabolismo , Receptores de Mineralocorticoides/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Acetilação , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Enzimológica da Expressão Gênica , Inibidores de Histona Desacetilases/administração & dosagem , Histona Desacetilases/genética , Humanos , Toxinas Marinhas , Oxazóis/administração & dosagem , Fosfoproteínas Fosfatases/metabolismo , Regiões Promotoras Genéticas , RNA Interferente Pequeno , Receptores de Mineralocorticoides/genética , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA