Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biometals ; 32(6): 923-937, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31676935

RESUMO

A putative copper ion-sensing transcriptional regulator CopR (TON_0836) from Thermococcus onnurineus NA1 was characterized. The CopR protein consists of a winged helix-turn-helix DNA-binding domain in the amino-terminal region and a TRASH domain that is assumed to be involved in metal ion-sensing in the carboxyl-terminal region. The CopR protein was most strongly bound to a region between its own gene promoter and a counter directional promoter region for copper efflux system CopA. When the divalent metals such as nickel, cobalt, copper, and iron were present, the CopR protein was dissociated from the target promoters on electrophoretic mobility shift assay (EMSA). The highest sensible ion is copper which affected protein releasing under 10 µM concentrations. CopR recognizes a significant upstream region of TATA box on CopR own promoter and acts as a transcriptional repressor in an in vitro transcription assay. Through site-directed mutagenesis of the DNA-binding domain, R34M mutant protein completely lost the DNA-binding activity on target promoter. When the conserved cysteine residues in C144XXC147 motif 1 of the TRASH domain were mutated into glycine, the double cysteine residue mutant protein alone lost the copper-binding activity. Therefore, CopR is a copper-sensing transcriptional regulator and acts as a repressor for autoregulation and for a putative copper efflux system CopA of T. onnurineus NA1.


Assuntos
Cobre/metabolismo , Regulação da Expressão Gênica em Archaea , Thermococcus/genética , Thermococcus/metabolismo , Fatores de Transcrição/metabolismo
2.
J Microbiol ; 57(8): 676-687, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31201724

RESUMO

Strain IMCC1322 was isolated from a surface water sample from the East Sea of Korea. Based on 16S rRNA analysis, IMCC1322 was found to belong to the OCS28 sub-clade of SAR116. The cells appeared as short vibrioids in logarithmic-phase culture, and elongated spirals during incubation with mitomycin or in aged culture. Growth characteristics of strain IMCC1322 were further evaluated based on genomic information; proteorhodopsin (PR), carbon monoxide dehydrogenase, and dimethylsulfoniopropionate (DMSP)-utilizing enzymes. IMCC1322 PR was characterized as a functional retinylidene protein that acts as a light-driven proton pump in the cytoplasmic membrane. However, the PR-dependent phototrophic potential of strain IMCC1322 was only observed under CO-inhibited and nutrient-limited culture conditions. A DMSP-enhanced growth response was observed in addition to cultures grown on C1 compounds like methanol, formate, and methane sulfonate. Strain IMCC1322 cultivation analysis revealed biogeochemical processes characteristic of the SAR116 group, a dominant member of the microbial community in euphotic regions of the ocean. The polyphasic taxonomy of strain IMCC1322 is given as Candidatus Puniceispirillum marinum, and was confirmed by chemotaxonomic tests, in addition to 16S rRNA phylogeny and cultivation analyses.


Assuntos
Alphaproteobacteria , RNA Ribossômico 16S/genética , Rodopsinas Microbianas , Água do Mar/microbiologia , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/crescimento & desenvolvimento , Alphaproteobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana/métodos , DNA Bacteriano/genética , República da Coreia , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , Compostos de Sulfônio/metabolismo , Sequenciamento Completo do Genoma/métodos
3.
Cell Death Differ ; 26(12): 2594-2606, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30903102

RESUMO

The loss of imprinting of MEST has been linked to certain types of cancer by promoter switching. However, MEST-mediated regulation of tumorigenicity and metastasis are yet to be understood. Herein, we reported that MEST is a key regulator of IL-6/JAK/STAT3/Twist-1 signal pathway-mediated tumor metastasis. Enhanced MEST expression is significantly associated with pathogenesis of breast cancer patients. Also, MEST induces metastatic potential of breast cancer through induction of the EMT-TFs-mediated EMT program. Moreover, MEST leads to Twist-1 induction by STAT3 activation and subsequently enables the induction of activation of the EMT program via the induction of STAT3 nuclear translocation. Furthermore, the c-terminal region of MEST was essential for STAT3 activation via the induction of JAK2/STAT3 complex formation. Finally, MEST is required for metastasis in an experimental metastasis model. These observations suggest that MEST is a promising target for intervention to prevent tumor metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Células Cultivadas , Transição Epitelial-Mesenquimal , Feminino , Humanos , Células MCF-7 , Camundongos , Metástase Neoplásica , Proteínas Nucleares/genética , Proteínas/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Proteína 1 Relacionada a Twist/genética , Regulação para Cima
4.
Bioresour Technol ; 211: 792-6, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27106591

RESUMO

Acetogens have often been observed to be inhibited by CO above an inhibition threshold concentration. In this study, a two-stage culture consisting of carboxydotrophic archaea and homoacetogenic bacteria is found to be effective in converting industrial waste gas derived from a steel mill process. In the first stage, Thermococcus onnurineus could grow on the Linz-Donawitz converter gas (LDG) containing ca. 56% CO as a sole energy source, converting the CO into H2 and CO2. Then, in the second stage, Thermoanaerobacter kivui could grow on the off-gas from the first stage culture, consuming the H2 and CO in the off-gas completely and producing acetate as a main product. T. kivui alone could not grow on the LDG gas. This work represents the first demonstration of acetate production using steel mill waste gas by a two-stage culture of carboxydotrophic hydrogenogenic microbes and homoacetogenic bacteria.


Assuntos
Acetatos/química , Monóxido de Carbono/química , Resíduos Industriais , Gerenciamento de Resíduos/métodos , Thermoanaerobacter/metabolismo , Thermococcus/metabolismo
5.
J Microbiol ; 54(1): 31-38, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26727899

RESUMO

A variety of microbes grow by respiration with dimethyl sulfoxide (DMSO) as an electron acceptor, and several distinct DMSO respiratory systems, consisting of electron carriers and a terminal DMSO reductase, have been characterized. The heterotrophic growth of a hyperthermophilic archaeon Thermococcus onnurineus NA1 was enhanced by the addition of DMSO, but the archaeon was not capable of reducing DMSO to DMS directly using a DMSO reductase. Instead, the archaeon reduced DMSO via a cysteine-cystine redox shuttle through a mechanism whereby cystine is microbially reduced to cysteine, which is then reoxidized by DMSO reduction. A thioredoxin reductase-protein disulfide oxidoreductase redox couple was identified to have intracellular cystine-reducing activity, permitting recycle of cysteine. This study presents the first example of DMSO reduction via an electron shuttle. Several Thermococcales species also exhibited enhanced growth coupled with DMSO reduction, probably by disposing of excess reducing power rather than conserving energy.


Assuntos
Cisteína/metabolismo , Cistina/metabolismo , Dimetil Sulfóxido/metabolismo , Thermococcus/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Genes Arqueais , Oxirredução , Thermococcus/genética , Thermococcus/crescimento & desenvolvimento
6.
Int J Mol Sci ; 16(5): 9167-95, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25915030

RESUMO

The hyperthermophilic archaeon Thermococcus onnurineus NA1 has been shown to produce H2 when using CO, formate, or starch as a growth substrate. This strain can also utilize elemental sulfur as a terminal electron acceptor for heterotrophic growth. To gain insight into sulfur metabolism, the proteome of T. onnurineus NA1 cells grown under sulfur culture conditions was quantified and compared with those grown under H2-evolving substrate culture conditions. Using label-free nano-UPLC-MSE-based comparative proteomic analysis, approximately 38.4% of the total identified proteome (589 proteins) was found to be significantly up-regulated (≥1.5-fold) under sulfur culture conditions. Many of these proteins were functionally associated with carbon fixation, Fe-S cluster biogenesis, ATP synthesis, sulfur reduction, protein glycosylation, protein translocation, and formate oxidation. Based on the abundances of the identified proteins in this and other genomic studies, the pathways associated with reductive sulfur metabolism, H2-metabolism, and oxidative stress defense were proposed. The results also revealed markedly lower expression levels of enzymes involved in the sulfur assimilation pathway, as well as cysteine desulfurase, under sulfur culture condition. The present results provide the first global atlas of proteome changes triggered by sulfur, and may facilitate an understanding of how hyperthermophilic archaea adapt to sulfur-rich, extreme environments.


Assuntos
Hidrogênio/metabolismo , Proteoma , Proteômica , Enxofre/metabolismo , Thermococcus/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Dióxido de Carbono/metabolismo , Expressão Gênica , Regulação da Expressão Gênica em Archaea , Glicosilação , Lipídeos/biossíntese , Oxirredução , Transporte Proteico , Proteólise , Proteômica/métodos , Thermococcus/genética
7.
J Biol Chem ; 290(11): 6994-7002, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25593316

RESUMO

The ATP synthase of many archaea has the conserved sodium ion binding motif in its rotor subunit, implying that these A1AO-ATP synthases use Na(+) as coupling ion. However, this has never been experimentally verified with a purified system. To experimentally address the nature of the coupling ion, we have purified the A1AO-ATP synthase from T. onnurineus. It contains nine subunits that are functionally coupled. The enzyme hydrolyzed ATP, CTP, GTP, UTP, and ITP with nearly identical activities of around 40 units/mg of protein and was active over a wide pH range with maximal activity at pH 7. Noteworthy was the temperature profile. ATP hydrolysis was maximal at 80 °C and still retained an activity of 2.5 units/mg of protein at 45 °C. The high activity of the enzyme at 45 °C opened, for the first time, a way to directly measure ion transport in an A1AO-ATP synthase. Therefore, the enzyme was reconstituted into liposomes generated from Escherichia coli lipids. These proteoliposomes were still active at 45 °C and coupled ATP hydrolysis to primary and electrogenic Na(+) transport. This is the first proof of Na(+) transport by an A1AO-ATP synthase and these findings are discussed in light of the distribution of the sodium ion binding motif in archaea and the role of Na(+) in the bioenergetics of archaea.


Assuntos
ATPases Translocadoras de Prótons/metabolismo , Sódio/metabolismo , Thermococcus/enzimologia , Trifosfato de Adenosina/metabolismo , Hidrólise , Lipossomos/metabolismo , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/isolamento & purificação , Thermococcus/metabolismo
8.
Proc Natl Acad Sci U S A ; 111(31): 11497-502, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25049407

RESUMO

Thermococcus onnurineus NA1 is known to grow by the anaerobic oxidation of formate to CO2 and H2, a reaction that operates near thermodynamic equilibrium. Here we demonstrate that this reaction is coupled to ATP synthesis by a transmembrane ion current. Formate oxidation leads to H(+) translocation across the cytoplasmic membrane that then drives Na(+) translocation. The ion-translocating electron transfer system is rather simple, consisting of only a formate dehydrogenase module, a membrane-bound hydrogenase module, and a multisubunit Na(+)/H(+) antiporter module. The electrochemical Na(+) gradient established then drives ATP synthesis. These data give a mechanistic explanation for chemiosmotic energy conservation coupled to formate oxidation to CO2 and H2. Because it is discussed that the membrane-bound hydrogenase with the Na(+)/H(+) antiporter module are ancestors of complex I of mitochondrial and bacterial electron transport these data also shed light on the evolution of ion transport in complex I-like electron transport chains.


Assuntos
Dióxido de Carbono/metabolismo , Metabolismo Energético , Formiatos/metabolismo , Hidrogênio/metabolismo , Sódio/farmacologia , Temperatura , Thermococcus/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/biossíntese , Transporte Biológico/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Hidrólise/efeitos dos fármacos , Íons/farmacologia , Mutação/genética , Oxirredução/efeitos dos fármacos , Prótons , Thermococcus/citologia , Thermococcus/crescimento & desenvolvimento , Thermococcus/fisiologia
9.
Nat Genet ; 46(1): 88-92, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24270359

RESUMO

The shift from terrestrial to aquatic life by whales was a substantial evolutionary event. Here we report the whole-genome sequencing and de novo assembly of the minke whale genome, as well as the whole-genome sequences of three minke whales, a fin whale, a bottlenose dolphin and a finless porpoise. Our comparative genomic analysis identified an expansion in the whale lineage of gene families associated with stress-responsive proteins and anaerobic metabolism, whereas gene families related to body hair and sensory receptors were contracted. Our analysis also identified whale-specific mutations in genes encoding antioxidants and enzymes controlling blood pressure and salt concentration. Overall the whale-genome sequences exhibited distinct features that are associated with the physiological and morphological changes needed for life in an aquatic environment, marked by resistance to physiological stresses caused by a lack of oxygen, increased amounts of reactive oxygen species and high salt levels.


Assuntos
Adaptação Fisiológica/genética , Genoma , Baleia Anã/genética , Animais , Pressão Sanguínea/genética , Glutationa/metabolismo , Haptoglobinas/genética , Masculino , Baleia Anã/metabolismo , Família Multigênica , Mutação , Oceano Pacífico , Filogenia , Densidade Demográfica , Tolerância ao Sal , Estresse Fisiológico
10.
J Bacteriol ; 194(14): 3760-1, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22740679

RESUMO

Volatile and nonvolatile compounds emitted from the plant growth-promoting rhizobacterium Bacillus sp. strain JS enhance the growth of tobacco and lettuce. Here, we report the high-quality genome sequence of this bacterium. Its 4.1-Mb genome reveals a number of genes whose products are possibly involved in promotion of plant growth or antibiosis.


Assuntos
Bacillus/genética , Genoma Bacteriano , Bacillus/classificação , Regulação Bacteriana da Expressão Gênica/fisiologia , Dados de Sequência Molecular , Desenvolvimento Vegetal , Plantas/microbiologia
11.
Mol Cells ; 33(2): 163-71, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22228183

RESUMO

The DJ-1 superfamily (DJ-1/ThiJ/PfpI superfamily) is distributed across all three kingdoms of life. These proteins are involved in a highly diverse range of cellular functions, including chaperone and protease activity. DJ-1 proteins usually form dimers or hexamers in vivo and show at least four different binding orientations via distinct interface patches. Abnormal oligomerization of human DJ-1 is related to neurodegenerative disorders including Parkinson's disease, suggesting important functional roles of quaternary structures. However, the quaternary structures of the DJ-1 superfamily have not been extensively studied. Here, we focus on the diverse oligomerization modes among the DJ-1 superfamily proteins and investigate the functional roles of quaternary structures both computationally and experimentally. The oligomerization modes are classified into 4 types (DJ-1, YhbO, Hsp, and YDR types) depending on the distinct interface patches (I-IV) upon dimerization. A unique, rotated interface via patch I is reported, which may potentially be related to higher order oligomerization. In general, the groups based on sequence similarity are consistent with the quaternary structural classes, but their biochemical functions cannot be directly inferred using sequence information alone. The observed phyletic pattern suggests the dynamic nature of quaternary structures in the course of evolution. The amino acid residues at the interfaces tend to show lower mutation rates than those of non-interfacial surfaces.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Chaperonas Moleculares/química , Proteínas Oncogênicas/química , Doença de Parkinson/metabolismo , Sítios de Ligação/genética , Biologia Computacional , Cristalografia por Raios X , Evolução Molecular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/classificação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Chaperonas Moleculares/classificação , Chaperonas Moleculares/genética , Taxa de Mutação , Proteínas Oncogênicas/classificação , Proteínas Oncogênicas/genética , Doença de Parkinson/genética , Filogenia , Ligação Proteica/genética , Proteína Desglicase DJ-1 , Multimerização Proteica , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade
12.
Appl Environ Microbiol ; 77(21): 7830-6, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21908637

RESUMO

It has been proposed that family VIII carboxylesterases and class C ß-lactamases are phylogenetically related; however, none of carboxylesterases has been reported to hydrolyze ß-lactam antibiotics except nitrocefin, a nonclinical chromogenic substrate. Here, we describe the first example of a novel carboxylesterase derived from a metagenome that is able to cleave the amide bond of various ß-lactam substrates and the ester bond of p-nitrophenyl esters. A clone with lipolytic activity was selected by functional screening of a metagenomic library using tributyrin agar plates. The sequence analysis of the clone revealed the presence of an open reading frame (estU1) encoding a polypeptide of 426 amino acids, retaining an S-X-X-K motif that is conserved in class C ß-lactamases and family VIII carboxylesterases. The gene was overexpressed in Escherichia coli, and the purified recombinant protein (EstU1) was further characterized. EstU1 showed esterase activity toward various chromogenic p-nitrophenyl esters. In addition, it exhibited hydrolytic activity toward nitrocefin, leading us to investigate whether EstU1 could hydrolyze ß-lactam antibiotics. EstU1 was able to hydrolyze first-generation ß-lactam antibiotics, such as cephalosporins, cephaloridine, cephalothin, and cefazolin. In a kinetic study, EstU1 showed a similar range of substrate affinities for both p-nitrophenyl butyrate and first-generation cephalosporins while the turnover efficiency for the latter was much lower. Furthermore, site-directed mutagenesis studies revealed that the catalytic triad of EstU1 plays a crucial role in hydrolyzing both ester bonds of p-nitrophenyl esters and amide bonds of the ß-lactam ring of antibiotics, implicating the predicted catalytic triad of EstU1 in both activities.


Assuntos
Antibacterianos/metabolismo , Carboxilesterase/genética , Carboxilesterase/metabolismo , Metagenoma , beta-Lactamas/metabolismo , Domínio Catalítico , Escherichia coli/genética , Expressão Gênica , Biblioteca Gênica , Hidrólise , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Homologia de Sequência , Especificidade por Substrato
13.
Nature ; 467(7313): 352-5, 2010 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-20844539

RESUMO

Although a common reaction in anaerobic environments, the conversion of formate and water to bicarbonate and H(2) (with a change in Gibbs free energy of ΔG° = +1.3 kJ mol(-1)) has not been considered energetic enough to support growth of microorganisms. Recently, experimental evidence for growth on formate was reported for syntrophic communities of Moorella sp. strain AMP and a hydrogen-consuming Methanothermobacter species and of Desulfovibrio sp. strain G11 and Methanobrevibacter arboriphilus strain AZ. The basis of the sustainable growth of the formate-users is explained by H(2) consumption by the methanogens, which lowers the H(2) partial pressure, thus making the pathway exergonic. However, it has not been shown that a single strain can grow on formate by catalysing its conversion to bicarbonate and H(2). Here we report that several hyperthermophilic archaea belonging to the Thermococcus genus are capable of formate-oxidizing, H(2)-producing growth. The actual ΔG values for the formate metabolism are calculated to range between -8 and -20 kJ mol(-1) under the physiological conditions where Thermococcus onnurineus strain NA1 are grown. Furthermore, we detected ATP synthesis in the presence of formate as a sole energy source. Gene expression profiling and disruption identified the gene cluster encoding formate hydrogen lyase, cation/proton antiporter and formate transporter, which were responsible for the growth of T. onnurineus NA1 on formate. This work shows formate-driven growth by a single microorganism with protons as the electron acceptor, and reports the biochemical basis of this ability.


Assuntos
Formiatos/metabolismo , Hidrogênio/metabolismo , Thermococcus/crescimento & desenvolvimento , Thermococcus/metabolismo , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/biossíntese , Anaerobiose , Biocatálise , Dióxido de Carbono/metabolismo , Elétrons , Formiato Desidrogenases , Perfilação da Expressão Gênica , Regulação da Expressão Gênica em Archaea/genética , Hidrogenase , Liases/metabolismo , Modelos Biológicos , Complexos Multienzimáticos , Família Multigênica/genética , Oxirredução , Pressão Parcial , Prótons , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Thermococcus/classificação , Thermococcus/genética , Água/metabolismo
14.
J Biosci Bioeng ; 109(6): 539-44, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20471590

RESUMO

As a continuous effort of developing highly enantioselective epoxide hydrolase from marine microorganisms, it was found that Maritimibacter alkaliphilus KCCM 42376 [corrected] was highly enantioselective toward racemic glycidyl phenyl ether (GPE). An open reading frame (ORF) encoding a putative epoxide hydrolase (EHase) was cloned from the genome of Maritimibacter alkaliphilus KCCM 42376 [corrected], followed by expression and purification in Escherichia coli. The purified EHase (REH) hydrolyzed (S)-GPE preferentially over (R)-GPE. Enantiopure (R)-GPE from kinetic resolution of 29.2 mM racemic GPE using the purified REH could be obtained with enantiopurity of more than 99.9% enantiomeric excess (ee) and 38.4% yield (theoretical, 50%) within 20 min (enantiomeric ratio (E-value): 38.4). The enantioselective activity of REH toward GPE was also confirmed by the analysis of the vicinal diol, 3-phenoxy-1,2-propanediol. To our knowledge, this study demonstrates the highest enantioselective resolution of racemic GPE using a purified biocatalyst among the known native EHases.


Assuntos
Alphaproteobacteria/enzimologia , Epóxido Hidrolases/metabolismo , Éteres Fenílicos/metabolismo , Sequência de Aminoácidos , Biocatálise , Epóxido Hidrolases/biossíntese , Epóxido Hidrolases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Glicerol/análogos & derivados , Glicerol/análise , Hidrólise , Dados de Sequência Molecular , Éteres Fenílicos/química
15.
J Microbiol ; 48(6): 803-7, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21221938

RESUMO

To understand the physiological functions of thermostable fructose-1,6-bisphosphatase (TNA1-Fbp) from Thermococcus onnurineus NA1, its recombinant enzyme was overexpressed in Escherichia coli, purified, and the enzymatic properties were characterized. The enzyme showed maximal activity for fructose-1,6-bisphosphate at 95°C and pH 8.0 with a half-life (t (1/2)) of about 8 h. TNA1-Fbp had broad substrate specificities for fructose-1,6-bisphosphate and its analogues including fructose-1-phosphate, glucose-1-phosphate, and phosphoenolpyruvate. In addition, its enzyme activity was increased five-fold by addition of 1 mM Mg(2+), while Li(+) did not enhance enzymatic activity. TNA1-Fbp activity was inhibited by ATP, ADP, and phosphoenolpyruvate, but AMP up to 100 mM did not have any effect. TNA1-Fbp is currently defined as a class V fructose-1,6-bisphosphatase (FBPase) because it is very similar to FBPase of Thermococcus kodakaraensis KOD1 based on sequence homology. However, this enzyme shows a different range of substrate specificities. These results suggest that TNA1-Fbp can establish new criterion for class V FBPases.


Assuntos
Frutose-Bifosfatase/metabolismo , Thermococcus/enzimologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Clonagem Molecular , Ativadores de Enzimas/metabolismo , Inibidores Enzimáticos/metabolismo , Escherichia coli/genética , Frutose-Bifosfatase/química , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/isolamento & purificação , Frutosefosfatos/metabolismo , Expressão Gênica , Glucofosfatos/metabolismo , Meia-Vida , Temperatura Alta , Concentração de Íons de Hidrogênio , Magnésio/metabolismo , Fosfoenolpiruvato/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
16.
J Microbiol Biotechnol ; 17(8): 1242-8, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18051591

RESUMO

Genomic analysis of a hyperthermophilic archaeon, Thermococcus onnurineus NA1 [1], revealed the presence of an open reading frame consisting of 1,377 bp similar to alpha-amylases from Thermococcales, encoding a 458-residue polypeptide containing a putative 25-residue signal peptide. The mature form of the alpha-amylase was cloned and the recombinant enzyme was characterized. The optimum activity of the enzyme occurred at 80 degrees C and pH 5.5. The enzyme showed a liquefying activity, hydrolyzing maltooligosaccharides, amylopectin, and starch to produce mainly maltose (G2) to maltoheptaose (G7), but not pullulan and cyclodextrin. Surprisingly, the enzyme was not highly thermostable, with half-life (t(1/2)) values of 10 min at 90 degrees C, despite the high similarity to alpha-amylases from Pyrococcus. Factors affecting the thermostability were considered to enhance the thermostability. The presence of Ca2+ seemed to be critical, significantly changing t(1/2) at 90 degrees C to 153 min by the addition of 0.5 mM Ca2+. On the other hand, the thermostability was not enhanced by the addition of Zn2+ or other divalent metals, irrespective of the concentration. The mutagenetic study showed that the recovery of zinc-binding residues (His175 and Cys189) enhanced the thermostability, indicating that the residues involved in metal binding is very critical for the thermostability.


Assuntos
Proteínas Arqueais/química , Estabilidade Enzimática/genética , Thermococcus/enzimologia , alfa-Amilases/química , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Cálcio/farmacologia , Cátions Bivalentes/farmacologia , Clonagem Molecular , Coenzimas/farmacologia , DNA Arqueal/química , DNA Arqueal/genética , Expressão Gênica , Glucanos/metabolismo , Meia-Vida , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade por Substrato , Temperatura , Thermococcus/genética , alfa-Amilases/genética , alfa-Amilases/metabolismo
17.
Int J Syst Evol Microbiol ; 57(Pt 10): 2207-2211, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17911284

RESUMO

A novel marine bacterium, strain JCS350(T), was isolated from marine sediment samples collected from a cold-seep area. The 16S rRNA gene sequence of the isolate showed high similarity to that of Erythrobacter luteolus SW-109(T) (95.9 % sequence similarity). Lower 16S rRNA gene sequence similarities were shown to other members of the genus Erythrobacter (94.6-95.4 %) and members of the genus Porphyrobacter (94.5-95.2 %). Phylogenetic analysis with all members of the family Erythrobacteraceae and several members of the family Sphingomonadaceae revealed that the isolate formed a phyletic line with [Erythrobacter] luteolus that was distinct from other members of the family Erythrobacteraceae. The dominant fatty acids of strain JCS350(T) were 18 : 1omega7c, 16 : 1omega7c and cyclopropane 17 : 0. The major respiratory quinone was ubiquinone 10. The DNA G+C content was 54.5 mol%. The isolate did not contain bacteriochlorophyll a. Optimal growth required the presence of 2 % (w/v) NaCl with either 0.18 % CaCl(2) or 0.59 % MgCl(2), at pH 6.5 and at 35 degrees C. On the basis of the evidence of this polyphasic taxonomic study, strain JCS350(T) should be classified in a novel genus and species in the family Erythrobacteraceae, for which the name Altererythrobacter epoxidivorans gen. nov., sp. nov. is proposed. The misclassified species [Erythrobacter] luteolus is transferred to the new genus as Altererythrobacter luteolus comb. nov. The type strain of Altererythrobacter epoxidivorans is JCS350(T) (=KCCM 42314(T) =JCM 13815(T)) and the type strain of Altererythrobacter luteolus is SW-109(T) (=KCTC 12311(T) =JCM 12599(T)).


Assuntos
Alphaproteobacteria/classificação , Alphaproteobacteria/isolamento & purificação , Epóxido Hidrolases/metabolismo , Sedimentos Geológicos/microbiologia , Alphaproteobacteria/enzimologia , Alphaproteobacteria/genética , Bacterioclorofila A/análise , Composição de Bases , Cloreto de Cálcio/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Genes de RNAr , Concentração de Íons de Hidrogênio , Cloreto de Magnésio/metabolismo , Dados de Sequência Molecular , Filogenia , Quinonas/análise , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Cloreto de Sódio/metabolismo , Temperatura
18.
J Biosci Bioeng ; 103(3): 221-8, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17434424

RESUMO

The prolyl oligopeptidase TNA1_POP was found to be encoded in the genome of the hyperthermophilic archaeon Thermococcus sp. NA1 and showed high similarities to its archaeal homologs (76-83%). The enzyme was found to be a single polypeptide composed of 616 amino acids with conserved signature domains. A recombinant TNA1_POP expressed in Escherichia coli was capable of hydrolyzing succinyl-Ala-Pro-p-nitroanilide (Suc-Ala-Pro-pNA) with temperature and pH optimums of 80 degrees C and 7, respectively. TNA1_POP activity appeared to be significantly activated by pre-incubation at 80 degrees C and 90 degrees C with the optimum temperature unchanged. The heat-activated enzyme exhibited a k(cat) approximately twofold higher than that of the unheated enzyme, however, both enzymes showed the same K(m). TNA1_POP was thermostable at 80 degrees C retaining 80% of its heat-activated activity even after 23 h, but it lost its enzymatic activity at 90 degrees C with a half-life of 3 h. The loss of the enzymatic activity at 90 degrees C seemed to be caused by the autodegradation of the enzyme, not by thermal denaturation, as supported by circular dichroism spectropolarimetry. Autodegradation fragments ranging from 2 to 18 kDa were mapped by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry.


Assuntos
Serina Endopeptidases/isolamento & purificação , Thermococcus/enzimologia , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Proteínas Arqueais/metabolismo , Sequência de Bases , DNA Arqueal/genética , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Fragmentos de Peptídeos/isolamento & purificação , Prolil Oligopeptidases , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Thermococcus/genética
19.
J Biol Chem ; 282(9): 6090-7, 2007 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-17179152

RESUMO

The insulin and insulin-like growth factor-1 (IGF-1) receptors mediate signaling for energy uptake and growth through insulin receptor substrates (IRSs), which interact with these receptors as well as with downstream effectors. Oxygen is essential not only for ATP production through oxidative phosphorylation but also for many cellular processes, particularly those involved in energy homeostasis. The oxygen tension in vivo is significantly lower than that in the air and can vary widely depending on the tissue as well as on perfusion and oxygen consumption. How oxygen tension affects IRSs and their functions is poorly understood. Our findings indicate that transient hypoxia (1% oxygen) leads to caspase-mediated cleavage of IRS-1 without inducing cell death. The IRS-1 protein level rebounds rapidly upon return to normoxia. Protein tyrosine phosphatases (PTPs) appear to be important for the IRS-1 cleavage because tyrosine phosphorylation of the insulin receptor was decreased in hypoxia and IRS-1 cleavage could be blocked either with H(2)O(2) or with vanadate, each of which inhibits PTPs. Activity of Akt, a downstream effector of insulin and IGF-1 signaling that is known to suppress caspase activation, was suppressed in hypoxia. Overexpression of dominant-negative Akt led to IRS-1 cleavage even in normoxia, and overexpression of constitutively active Akt partially suppressed IRS-1 cleavage in hypoxia, suggesting that hypoxia-mediated suppression of Akt may induce caspase-mediated IRS-1 cleavage. In conclusion, our study elucidates a mechanism by which insulin and IGF-1 signaling can be matched to the oxygen level that is available to support growth and energy metabolism.


Assuntos
Caspases/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular , Metabolismo Energético , Humanos , Proteínas Substratos do Receptor de Insulina , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteínas Tirosina Fosfatases/metabolismo , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Transfecção
20.
Protein Expr Purif ; 52(2): 340-7, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17126562

RESUMO

A metagenomics approach is an efficient method of isolating novel and useful genes from uncultured microorganisms in diverse environments. In this research, a gene encoding a new esterase (EM2L8) was cloned and characterized from the metagenomic DNA library of a deep-sea sediment. The gene consisted of 804bp encoding a polypeptide of 267 amino acids with a molecular mass of 28,952. The deduced amino acid sequence showed similarities with the BioH of Kurthia, the 3-oxoadipate enol-lactonase of Haloarcula and the acyltransferase of Thermoanaerobacter, which feature identities of 38%, 32%, and 33%, respectively. Residues essential for esterase activity, such as pentapeptide (GXSXG) and catalytic triad sequences, were uncovered. While the protein was overproduced mainly as inclusion body at 37 degrees C, it was mainly produced as a soluble active enzyme at 18 degrees C. A zymogram analysis revealed that purified EM2L8 taken from the soluble fraction could hydrolyze tributyrin substrate. Furthermore, the protein from the inclusion body fraction also showed strong activity on gel, thus indicating that the protein was refolded during SDS-gel electrophoresis and the ensuing incubation period. When the inclusion body was mixed with some anionic detergent solutions and diluted with a non-detergent buffer, the insoluble EM2L8 refolded rapidly and recovered its full esterase activity. Although EM2L8 had an optimum temperature of 50-55 degrees C, its activation energy in the range of 10-40 degrees C was 8.34kcal/mol, indicating that it is a cold-adapted enzyme. Moreover, it was found to have an optimum pH of 10-11, thus revealing that it is an alkaline enzyme. In this paper, the new esterase EM2L8 buried in a deep-sea sediment became known on the surface and was characterized biochemically.


Assuntos
Esterases/metabolismo , Expressão Gênica/fisiologia , Sedimentos Geológicos/química , Dobramento de Proteína , Sequência de Aminoácidos , Clonagem Molecular , Esterases/química , Esterases/genética , Biblioteca Genômica , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA