Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 194(7): 1171-1184, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38548268

RESUMO

Interactions between endothelial cells (ECs) and mural pericytes (PCs) are critical in maintaining the stability and function of the microvascular wall. Abnormal interactions between these two cell types are a hallmark of progressive fibrotic diseases such as systemic sclerosis (also known as scleroderma). However, the role of PCs in signaling microvascular dysfunction remains underexplored. We hypothesized that integrin-matrix interactions contribute to PC migration from the vascular wall and conversion into interstitial myofibroblasts. Herein, pro-inflammatory tumor necrosis factor α (TNFα) or a fibrotic growth factor [transforming growth factor ß1 (TGF-ß1)] were used to evaluate human PC inflammatory and fibrotic phenotypes by assessing their migration, matrix deposition, integrin expression, and subsequent effects on endothelial dysfunction. Both TNFα and TGF-ß1 treatment altered integrin expression and matrix protein deposition, but only fibrotic TGF-ß1 drove PC migration in an integrin-dependent manner. In addition, integrin-dependent PC migration was correlated to changes in EC angiopoietin-2 levels, a marker of vascular instability. Finally, there was evidence of changes in vascular stability corresponding to disease state in human systemic sclerosis skin. This work shows that TNFα and TGF-ß1 induce changes in PC integrin expression and matrix deposition that facilitate migration and reduce vascular stability, providing evidence that microvascular destabilization can be an early indicator of tissue fibrosis.


Assuntos
Movimento Celular , Fibrose , Integrinas , Pericitos , Escleroderma Sistêmico , Fator de Crescimento Transformador beta1 , Pericitos/metabolismo , Pericitos/patologia , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/metabolismo , Integrinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Microvasos/patologia , Microvasos/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Pele/patologia , Pele/metabolismo , Pele/irrigação sanguínea
2.
Elife ; 112022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35199643

RESUMO

Kinase activity in signaling networks frequently depends on regulatory subunits that can both inhibit activity by interacting with the catalytic subunits and target the kinase to distinct molecular partners and subcellular compartments. Here, using a new synthetic molecular interaction system, we show that translocation of a regulatory subunit of the protein kinase A (PKA-R) to the plasma membrane has a paradoxical effect on the membrane kinase activity. It can both enhance it at lower translocation levels, even in the absence of signaling inputs, and inhibit it at higher translocation levels, suggesting its role as a linker that can both couple and decouple signaling processes in a concentration-dependent manner. We further demonstrate that superposition of gradients of PKA-R abundance across single cells can control the directionality of cell migration, reversing it at high enough input levels. Thus, complex in vivo patterns of PKA-R localization can drive complex phenotypes, including cell migration.


Assuntos
Membrana Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Movimento Celular , Polaridade Celular , AMP Cíclico/metabolismo , Células HeLa , Humanos , Fosforilação , Transporte Proteico , Transdução de Sinais , Sirolimo/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(47): 23551-23561, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31685607

RESUMO

Angiogenesis frequently occurs in the context of acute or persistent inflammation. The complex interplay of proinflammatory and proangiogenic cues is only partially understood. Using an experimental model, permitting exposure of developing blood vessel sprouts to multiple combinations of diverse biochemical stimuli and juxtacrine cell interactions, we present evidence that a proinflammatory cytokine, tumor necrosis factor (TNF), can have both proangiogenic and antiangiogenic effects, depending on the dose and the presence of pericytes. In particular, we find that pericytes can rescue and enhance angiogenesis in the presence of otherwise-inhibitory high TNF doses. This sharp switch from proangiogenic to antiangiogenic effect of TNF observed with an escalating dose of this cytokine, as well as the effect of pericytes, are explained by a mathematical model trained on the biochemical data. Furthermore, this model was predictive of the effects of diverse combinations of proinflammatory and antiinflammatory cues, and variable pericyte coverage. The mechanism supports the effect of TNF and pericytes as modulating signaling networks impinging on Notch signaling and specification of the Tip and Stalk phenotypes. This integrative analysis elucidates the plasticity of the angiogenic morphogenesis in the presence of diverse and potentially conflicting cues, with immediate implications for many physiological and pathological settings.


Assuntos
Células Endoteliais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Pericitos/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Comunicação Celular , Técnicas de Cultura de Células , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação , Lisofosfolipídeos/farmacologia , Modelos Biológicos , Neovascularização Patológica/patologia , Pericitos/efeitos dos fármacos , Receptores Notch/fisiologia , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Acetato de Tetradecanoilforbol/farmacologia , Engenharia Tecidual , Fator de Necrose Tumoral alfa/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fator A de Crescimento do Endotélio Vascular/fisiologia
4.
J Vis Exp ; (147)2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31180367

RESUMO

Various limitations of 2D cell culture systems have sparked interest in 3D cell culture and analysis platforms, which would better mimic the spatial and chemical complexity of living tissues and mimic in vivo tissue functions. Recent advances in microfabrication technologies have facilitated the development of 3D in vitro environments in which cells can be integrated into a well-defined extracellular matrix (ECM) and a defined set of soluble or matrix associated biomolecules. However, technological barriers have limited their widespread use in research laboratories. Here, we describe a method to construct simple devices for 3D culture and experimentation with cells and multicellular organoids in 3D microenvironments with a defined chemoattractant gradient. We illustrate the use of this platform for analysis of the response of epithelial cells and organoids to gradients of growth factors, such as epidermal growth factor (EGF). EGF gradients were stable in the devices for several days leading to directed branch formation in breast organoids. This analysis allowed us to conclude that collective gradient sensing by groups of cells is more sensitive vs. single cells. We also describe the fabrication method, which does not require photolithography facilities nor advanced soft lithography techniques. This method will be helpful to study 3D cellular behaviors in the context of the analysis of development and pathological states, including cancer.


Assuntos
Matriz Extracelular/metabolismo , Imageamento Tridimensional/métodos , Receptores de Formil Peptídeo/fisiologia , Animais , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA