Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 158(20)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37212400

RESUMO

Phototriggers are useful molecular tools to initiate reactions in enzymes by light for the purpose of photoenzymatic design and mechanistic investigations. Here, we incorporated the non-natural amino acid 5-cyanotryptophan (W5CN) in a polypeptide scaffold and resolved the photochemical reaction of the W5CN-W motif using femtosecond transient UV/Vis and mid-IR spectroscopy. We identified a marker band of ∼2037 cm-1 from the CN stretch of the electron transfer intermediate W5CN·- in the transient IR measurement and found UV/Vis spectroscopic evidence for the W·+ radical at 580 nm. Through kinetic analysis, we characterized that the charge separation between the excited W5CN and W occurs in 253 ps, with a charge-recombination lifetime of 862 ps. Our study highlights the potential use of the W5CN-W pair as an ultrafast phototrigger to initiate reactions in enzymes that are not light-sensitive, making downstream reactions accessible to femtosecond spectroscopic detection.


Assuntos
Cinética , Transporte de Elétrons
2.
Anal Bioanal Chem ; 411(17): 3777-3787, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31111181

RESUMO

Photoacoustic spectroscopy in a differential Helmholtz resonator has been employed with near-IR and red diode lasers for the detection of CO2, H2S and O2 in 1 bar of air/N2 and natural gas, in static and flow cell measurements. With the red distributed feedback (DFB) diode laser, O2 can be detected at 764.3 nm with a noise equivalent detection limit of 0.60 mbar (600 ppmv) in 1 bar of air (35-mW laser, 1-s integration), corresponding to a normalised absorption coefficient α = 2.2 × 10-8 cm-1 W s1/2. Within the tuning range of the near-IR DFB diode laser (6357-6378 cm-1), CO2 and H2S absorption features can be accessed, with a noise equivalent detection limit of 0.160 mbar (160 ppmv) CO2 in 1 bar N2 (30-mW laser, 1-s integration), corresponding to a normalised absorption coefficient α = 8.3 × 10-9 cm-1 W s1/2. Due to stronger absorptions, the noise equivalent detection limit of H2S in 1 bar N2 is 0.022 mbar (22 ppmv) at 1-s integration time. Similar detection limits apply to trace impurities in 1 bar natural gas. Detection limits scale linearly with laser power and with the square root of integration time. At 16-s total measurement time to obtain a spectrum, a noise equivalent detection limit of 40 ppmv CO2 is obtained after a spectral line fitting procedure, for example. Possible interferences due to weak water and methane absorptions have been discussed and shown to be either negligible or easy to correct. The setup has been used for simultaneous in situ monitoring of O2, CO2 and H2S in the cysteine metabolism of microbes (E. coli), and for the analysis of CO2 and H2S impurities in natural gas. Due to the inherent signal amplification and noise cancellation, photoacoustic spectroscopy in a differential Helmholtz resonator has a great potential for trace gas analysis, with possible applications including safety monitoring of toxic gases and applications in the biosciences and for natural gas analysis in petrochemistry. Graphical abstract.


Assuntos
Ar/análise , Dióxido de Carbono/análise , Sulfeto de Hidrogênio/análise , Gás Natural/análise , Oxigênio/análise , Técnicas Fotoacústicas/métodos , Análise Espectral/métodos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA