Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(11)2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37296576

RESUMO

As an essential component of the sarcomere, actin thin filament stems from the Z-disk extend toward the middle of the sarcomere and overlaps with myosin thick filaments. Elongation of the cardiac thin filament is essential for normal sarcomere maturation and heart function. This process is regulated by the actin-binding proteins Leiomodins (LMODs), among which LMOD2 has recently been identified as a key regulator of thin filament elongation to reach a mature length. Few reports have implicated homozygous loss of function variants of LMOD2 in neonatal dilated cardiomyopathy (DCM) associated with thin filament shortening. We present the fifth case of DCM due to biallelic variants in the LMOD2 gene and the second case with the c.1193G>A (p.W398*) nonsense variant identified by whole-exome sequencing. The proband is a 4-month male infant of Hispanic descent with advanced heart failure. Consistent with previous reports, a myocardial biopsy exhibited remarkably short thin filaments. However, compared to other cases of identical or similar biallelic variants, the patient presented here has an unusually late onset of cardiomyopathy during infancy. Herein, we present the phenotypic and histological features of this variant, confirm the pathogenic impact on protein expression and sarcomere structure, and discuss the current knowledge of LMOD2-related cardiomyopathy.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Recém-Nascido , Lactente , Masculino , Humanos , Cardiomiopatia Dilatada/genética , Sequenciamento do Exoma , Homozigoto , Coração
2.
RNA ; 26(4): 481-491, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31953255

RESUMO

Long noncoding RNAs (lncRNAs) have emerged as critical epigenetic regulators and play important roles in cardiac development and congenital heart disease. In a previous study, we identified a novel lncRNA, Ppp1r1b, with expression highly correlated with myogenesis. However, the molecular mechanism that underlies Ppp1r1b-lncRNA function in myogenic regulation is unknown. By silencing Ppp1r1b-lncRNA, mouse C2C12 and human skeletal myoblasts failed to develop fully differentiated myotubes. Myogenic differentiation was also impaired in PPP1R1B-lncRNA deficient human-induced pluripotent stem cell-derived cardiomyocytes (hiPSCs-CMs). The expression of myogenic transcription factors, including MyoD, Myogenin, and Tbx5, as well as sarcomere proteins, was significantly suppressed in Ppp1r1b-lncRNA inhibited myoblast cells and neonatal mouse heart. Histone modification analysis revealed increased H3K27 tri-methylation at MyoD1 and Myogenin promoters in GapmeR treated C2C12 cells. Furthermore, Ppp1r1b-lncRNA was found to bind to Ezh2, and chromatin isolation by RNA purification (ChIRP) assay revealed enriched interaction of Ppp1r1b-lncRNA with Myod1 and Tbx5 promoters, suggesting that Ppp1r1b-lncRNA induces transcription of myogenic transcription factors by interacting with the polycomb repressive complex 2 (PRC2) at the chromatin interface. Correspondingly, the silencing of Ppp1r1b-lncRNA increased EZH2 binding at promoter regions of myogenic transcription factors. Therefore, our results suggest that Ppp1r1b-lncRNA promotes myogenic differentiation through competing for PRC2 binding with chromatin of myogenic master regulators during heart and skeletal muscle development.


Assuntos
Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Miócitos Cardíacos/metabolismo , Complexo Repressor Polycomb 2/metabolismo , RNA Longo não Codificante/genética , Animais , Linhagem Celular , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inativação Gênica , Código das Histonas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteína MyoD/genética , Proteína MyoD/metabolismo , Miogenina/genética , Miogenina/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
3.
J Mol Med (Berl) ; 97(12): 1711-1722, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31834445

RESUMO

The phenotypic spectrum of congenital heart defects (CHDs) is contributed by both genetic and environmental factors. Their interactions are profoundly heterogeneous but may operate on common pathways as in the case of hypoxia signaling during postnatal heart development in the context of CHDs. Tetralogy of Fallot (TOF) is the most common cyanotic (hypoxemic) CHD. However, how the hypoxic environment contributes to TOF pathogenesis after birth is poorly understood. We performed Genome-wide transcriptome analysis on right ventricle outflow tract (RVOT) specimens from cyanotic and noncyanotic TOF. Co-expression network analysis identified gene modules specifically associated with clinical diagnosis and hypoxemia status in the TOF hearts. In particular, hypoxia-dependent induction of myocyte proliferation is associated with E2F1-mediated cell cycle regulation and repression of the WNT11-RB1 axis. Genes enriched in epithelial mesenchymal transition (EMT), fibrosis, and sarcomere were also repressed in cyanotic TOF patients. Importantly, transcription factor analysis of the hypoxia-regulated modules suggested CREB1 as a putative regulator of hypoxia/WNT11-RB1 circuit. The study provides a high-resolution landscape of transcriptome programming associated with TOF phenotypes and unveiled hypoxia-induced regulatory circuit in cyanotic TOF. Hypoxia-induced cardiomyocyte proliferation involves negative modulation of CREB1 activity upstream of the WNT11-RB1 axis. KEY MESSAGES: Genetic and environmental factors contribute to congenital heart defects (CHDs). How hypoxia contributes to Tetralogy of Fallot (TOF) pathogenesis after birth is unclear. Systems biology-based analysis revealed distinct molecular signature in CHDs. Gene expression modules specifically associated with cyanotic TOF were uncovered. Key regulatory circuits induced by hypoxia in TOF pathogenesis after birth were unveiled.


Assuntos
Ventrículos do Coração/metabolismo , Hipóxia/metabolismo , Tetralogia de Fallot/metabolismo , Transcriptoma/genética , Criança , Pré-Escolar , Estudos de Coortes , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fator de Transcrição E2F1/metabolismo , Transição Epitelial-Mesenquimal/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Genoma , Ventrículos do Coração/patologia , Humanos , Lactente , Masculino , Transdução de Sinais/genética , Tetralogia de Fallot/genética , Transcriptoma/fisiologia , Proteínas Wnt/metabolismo
4.
JCI Insight ; 2(17)2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28878122

RESUMO

Ventricular chamber growth and development during perinatal circulatory transition is critical for functional adaptation of the heart. However, the chamber-specific programs of neonatal heart growth are poorly understood. We used integrated systems genomic and functional biology analyses of the perinatal chamber specific transcriptome and we identified Wnt11 as a prominent regulator of chamber-specific proliferation. Importantly, downregulation of Wnt11 expression was associated with cyanotic congenital heart defect (CHD) phenotypes and correlated with O2 saturation levels in hypoxemic infants with Tetralogy of Fallot (TOF). Perinatal hypoxia treatment in mice suppressed Wnt11 expression and induced myocyte proliferation more robustly in the right ventricle, modulating Rb1 protein activity. Wnt11 inactivation was sufficient to induce myocyte proliferation in perinatal mouse hearts and reduced Rb1 protein and phosphorylation in neonatal cardiomyocytes. Finally, downregulated Wnt11 in hypoxemic TOF infantile hearts was associated with Rb1 suppression and induction of proliferation markers. This study revealed a previously uncharacterized function of Wnt11-mediated signaling as an important player in programming the chamber-specific growth of the neonatal heart. This function influences the chamber-specific development and pathogenesis in response to hypoxia and cyanotic CHDs. Defining the underlying regulatory mechanism may yield chamber-specific therapies for infants born with CHDs.


Assuntos
Proliferação de Células/fisiologia , Coração/embriologia , Proteínas Wnt/fisiologia , Animais , Animais Recém-Nascidos , Regulação para Baixo , Feminino , Expressão Gênica , Genes cdc , Coração/crescimento & desenvolvimento , Cardiopatias Congênitas/metabolismo , Humanos , Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteína do Retinoblastoma/metabolismo , Proteína do Retinoblastoma/fisiologia , Transdução de Sinais , Proteínas Wnt/metabolismo
5.
Circ Cardiovasc Genet ; 9(5): 395-407, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27591185

RESUMO

BACKGROUND: Cardiac maturation during perinatal transition of heart is critical for functional adaptation to hemodynamic load and nutrient environment. Perturbation in this process has major implications in congenital heart defects. Transcriptome programming during perinatal stages is an important information but incomplete in current literature, particularly, the expression profiles of the long noncoding RNAs (lncRNAs) are not fully elucidated. METHODS AND RESULTS: From comprehensive analysis of transcriptomes derived from neonatal mouse heart left and right ventricles, a total of 45 167 unique transcripts were identified, including 21 916 known and 2033 novel lncRNAs. Among these lncRNAs, 196 exhibited significant dynamic regulation along maturation process. By implementing parallel weighted gene co-expression network analysis of mRNA and lncRNA data sets, several lncRNA modules coordinately expressed in a developmental manner similar to protein coding genes, while few lncRNAs revealed chamber-specific patterns. Out of 2262 lncRNAs located within 50 kb of protein coding genes, 5% significantly correlate with the expression of their neighboring genes. The impact of Ppp1r1b-lncRNA on the corresponding partner gene Tcap was validated in cultured myoblasts. This concordant regulation was also conserved in human infantile hearts. Furthermore, the Ppp1r1b-lncRNA/Tcap expression ratio was identified as a molecular signature that differentiated congenital heart defect phenotypes. CONCLUSIONS: The study provides the first high-resolution landscape on neonatal cardiac lncRNAs and reveals their potential interaction with mRNA transcriptome during cardiac maturation. Ppp1r1b-lncRNA was identified as a regulator of Tcap expression, with dynamic interaction in postnatal cardiac development and congenital heart defects.


Assuntos
Perfilação da Expressão Gênica/métodos , Cardiopatias Congênitas/genética , Ventrículos do Coração/crescimento & desenvolvimento , Miocárdio/metabolismo , RNA Longo não Codificante/genética , Transcriptoma , Animais , Animais Recém-Nascidos , Células Cultivadas , Conectina/genética , Conectina/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Cardiopatias Congênitas/fisiopatologia , Ventrículos do Coração/anormalidades , Ventrículos do Coração/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Mioblastos Cardíacos/metabolismo , Miocárdio/patologia , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
6.
J Proteome Res ; 8(4): 1631-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19714806

RESUMO

Oxidative stress plays an important role in the development of airway inflammation and hyperreactivity in asthma. The identification of oxidative stress markers in bronchoalveolar lavage fluid (BALF) and lung tissue from ovalbumin (OVA) sensitized mice could provide new insight into disease pathogenesis and possible use of antioxidants to alleviate disease severity. We used two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to determine the impact of the thiol antioxidant, N-acetylcysteine (NAC), on protein expression in a murine OVA model. At least six proteins or protein families were found to be significantly increased in BALF from OVA-challenged mice compared to a control group: Chitinase 3-like protein 3 (Yml), Chitinase 3-like protein 4 (Ym2), acidic mammalian Chitinase (AMCase), pulmonary surfactant-associated protein D (SP-D), resistin-like molecule alpha (RELMalpha) or "found in inflammatory 1" (FIZZ1), and haptoglobin alpha-subunit. A total of nine proteins were significantly increased in lung tissue from the murine asthma model, including Yml, Ym2, FIZZ1, and other lung remodeling-related proteins. Western blotting confirmed increased Yml/Ym2, SP-D, and FIZZ1 expression measured from BAL fluid and lung tissue from OVA-challenged mice. Intraperitoneal NAC administration prior to the final OVA challenge inhibited Yml/Ym2, SP-D, and FIZZ1 expression in BALF and lung tissue. The oxidative stress proteins, Ym1/Ym2, FIZZ1, and SP-D, could play an important role in the pathogenesis of asthma and may be useful oxidative stress markers.


Assuntos
Asma/metabolismo , Líquido da Lavagem Broncoalveolar/química , Quitinases/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pulmão/metabolismo , Estresse Oxidativo/fisiologia , Acetilcisteína/farmacologia , Animais , Eletroforese em Gel Bidimensional , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Proteoma/metabolismo , Espectrometria de Massas em Tandem
7.
J Biol Chem ; 279(6): 3893-9, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14604987

RESUMO

The uridine insertion/deletion editing complex, which we have termed the L-complex, is composed of at least 16 polypeptides stabilized entirely by protein-protein interactions. Three L-complex proteins contain zinc finger motifs that could be involved in these interactions. In Leishmania these proteins are labeled LC-1, LC-4, and LC-7b, and the orthologs in Trypanosoma brucei are labeled MP81, MP63, and MP42. Overexpression of TAP-tagged LC-4 in Leishmania tarentolae led to a partial localization of the protein in the L-complex together with the endogenous LC-4 protein, suggesting at least a dimeric organization. Disruption of zinc fingers 1 or 2 (ZnF-1 and ZnF-2) in the tagged LC-4 protein was performed by mutation of the two zinc-binding cysteines to glycines. Disruption of ZnF-1 led to a partial growth defect and a substantive breakdown of the L-complex, whereas disruption of ZnF-2 had no effect on cell growth and caused a partial breakdown of the L-complex. A close interaction of LC-4 with 2-4 proteins, including REL1 (RNA ligase) and LC-3, was suggested by chemical crosslinking and co-immunoprecipitation experiments. Our results suggest that both ZnF-1 and ZnF-2 in LC-4 play a role in protein-protein interactions and indicate that the LC-4 subcomplex may be required for formation or stability of the entire L-complex.


Assuntos
Leishmania/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA de Protozoário/genética , Eletroforese em Gel Bidimensional , Genes de Protozoários , Leishmania/genética , Substâncias Macromoleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas de Protozoários/genética , Edição de RNA , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Dedos de Zinco
8.
EMBO J ; 22(4): 913-24, 2003 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-12574127

RESUMO

A multiprotein, high molecular weight complex active in both U-insertion and U-deletion as judged by a pre-cleaved RNA editing assay was isolated from mitochondrial extracts of Leishmania tarentolae by the tandem affinity purification (TAP) procedure, using three different TAP-tagged proteins of the complex. This editing- or E-complex consists of at least three protein-containing components interacting via RNA: the RNA ligase-containing L-complex, a 3' TUTase (terminal uridylyltransferase) and two RNA-binding proteins, Ltp26 and Ltp28. Thirteen approximately stoichiometric components were identified by mass spectrometric analysis of the core L-complex: two RNA ligases; homologs of the four Trypanosoma brucei editing proteins; and seven novel polypeptides, among which were two with RNase III, one with an AP endo/exonuclease and one with nucleotidyltransferase motifs. Three proteins have no similarities beyond kinetoplastids.


Assuntos
Leishmania/genética , Mitocôndrias/genética , Proteínas de Protozoários/genética , Edição de RNA , Uracila , Sequência de Aminoácidos , Animais , Leishmania/metabolismo , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência
9.
J Cell Sci ; 115(Pt 12): 2529-39, 2002 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12045223

RESUMO

GPI8 from Trypanosoma brucei was cloned and expressed in Escherichia coli. TbGPI8 encodes a 37 kDa protein (35 kDa after removal of the putative signal sequence) with a pI of 5.5. It contains one potential N-glycosylation site near the N-terminus but no C-terminal hydrophobic region. Enzyme activity assays using trypanosomal lysates or recombinant TbGpi8 exhibited cleavage of the synthetic peptide acetyl-S-V-L-N-aminomethyl-coumarine, indicating that TbGpi8 is indeed directly involved in the proteolytic processing of the GPI anchoring signal. Intracellular localization of TbGpi8 within tubular structures, such as the endoplasmic reticulum, was observed by using specific anti-TbGpi8 antibodies. The transamidase mechanism of GPI anchoring was studied in bloodstream forms of Trypanosoma brucei using media containing hydrazine or biotinylated hydrazine. In the presence of the latter nucleophile, part of the newly formed VSG was linked to this instead of the GPI anchor and was not transferred to the cell surface. VSG-hydrazine-biotin was detected by streptavidin in western blots and intracellularly in Golgi-like compartments.


Assuntos
Aminoaciltransferases/isolamento & purificação , Moléculas de Adesão Celular/isolamento & purificação , Membrana Celular/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Trypanosoma brucei brucei/enzimologia , Tripanossomíase Africana/enzimologia , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo , Aminoaciltransferases/genética , Animais , Variação Antigênica/genética , Bioensaio , Moléculas de Adesão Celular/genética , Compartimento Celular/fisiologia , Clonagem Molecular , Técnica Indireta de Fluorescência para Anticorpo , Hidrazinas , Técnicas In Vitro , Dados de Sequência Molecular , Peptídeo Hidrolases , Peptídeos , Proteínas Recombinantes de Fusão/genética , Homologia de Sequência de Aminoácidos , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA