Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(5): 101567, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38744277

RESUMO

Bispecific T cell engagers (TCEs) show promising clinical efficacy in blood tumors, but their application to solid tumors remains challenging. Here, we show that Fc-fused IL-7 (rhIL-7-hyFc) changes the intratumoral CD8 T cell landscape, enhancing the efficacy of TCE immunotherapy. rhIL-7-hyFc induces a dramatic increase in CD8 tumor-infiltrating lymphocytes (TILs) in various solid tumors, but the majority of these cells are PD-1-negative tumor non-responsive bystander T cells. However, they are non-exhausted and central memory-phenotype CD8 T cells with high T cell receptor (TCR)-recall capacity that can be triggered by tumor antigen-specific TCEs to acquire tumoricidal activity. Single-cell transcriptome analysis reveals that rhIL-7-hyFc-induced bystander CD8 TILs transform into cycling transitional T cells by TCE redirection with decreased memory markers and increased cytotoxic molecules. Notably, TCE treatment has no major effect on tumor-reactive CD8 TILs. Our results suggest that rhIL-7-hyFc treatment promotes the antitumor efficacy of TCE immunotherapy by increasing TCE-sensitive bystander CD8 TILs in solid tumors.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , Interleucina-7 , Linfócitos do Interstício Tumoral , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Interleucina-7/imunologia , Interleucina-7/metabolismo , Humanos , Animais , Imunoterapia/métodos , Camundongos , Neoplasias/imunologia , Neoplasias/terapia , Linhagem Celular Tumoral , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Efeito Espectador/imunologia
3.
Sci Adv ; 7(3)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523913

RESUMO

Cancer immunotherapy with 4-1BB agonists has limited further clinical development because of dose-limiting toxicity. Here, we developed a bispecific antibody (bsAb; B7-H3×4-1BB), targeting human B7-H3 (hB7-H3) and mouse or human 4-1BB, to restrict the 4-1BB stimulation in tumors. B7-H3×m4-1BB elicited a 4-1BB-dependent antitumor response in hB7-H3-overexpressing tumor models without systemic toxicity. BsAb primarily targets CD8 T cells in the tumor and increases their proliferation and cytokine production. Among the CD8 T cell population in the tumor, 4-1BB is solely expressed on PD-1+Tim-3+ "terminally differentiated" subset, and bsAb potentiates these cells for eliminating the tumor. Furthermore, the combination of bsAb and PD-1 blockade synergistically inhibits tumor growth accompanied by further increasing terminally differentiated CD8 T cells. B7-H3×h4-1BB also shows antitumor activity in h4-1BB-expressing mice. Our data suggest that B7-H3×4-1BB is an effective and safe therapeutic agent against B7-H3-positive cancers as monotherapy and combination therapy with PD-1 blockade.


Assuntos
Anticorpos Biespecíficos , Linfócitos T CD8-Positivos , Linfócitos do Interstício Tumoral , Neoplasias , Animais , Anticorpos Biespecíficos/farmacologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1
4.
Clin Transl Immunology ; 9(9): e1168, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32994996

RESUMO

OBJECTIVES: Emerging oncotherapeutic strategies require the induction of an immunostimulatory tumor microenvironment (TME) containing numerous tumor-reactive CD8+ T cells. Interleukin-7 (IL-7), a T-cell homeostatic cytokine, induces an antitumor response; however, the detailed mechanisms underlying the contributions of the IL-7 to TME remain unclear. Here, we aimed to investigate the mechanism underlying the induction of antitumor response by hybrid Fc-fused long-acting recombinant human IL-7 (rhIL-7-hyFc) through regulation of both adaptive and innate immune cells in the TME. METHODS: We evaluated rhIL-7-hyFc-mediated antitumor responses in murine syngeneic tumor models. We analysed the cellular and molecular features of tumor-infiltrating lymphocytes (TILs) and changes in the TME after rhIL-7-hyFc treatment. Furthermore, we evaluated the antitumor efficacy of rhIL-7-hyFc combined with chemotherapy and checkpoint inhibitors (CPIs). RESULTS: Systemic delivery of rhIL-7-hyFc induced significant therapeutic benefits by expanding CD8+ T cells with enhanced tumor tropism. In tumors, rhIL-7-hyFc increased both tumor-reactive and bystander CD8+ TILs, all of which displayed enhanced effector functions but less exhausted phenotypes. Moreover, rhIL-7-hyFc suppressed the generation of immunosuppressive myeloid cells in the bone marrow of tumor-bearing mice, resulting in the immunostimulatory TME. Combination therapy with chemotherapy and CPIs, rhIL-7-hyFc elicited a strong antitumor response and even under a T lymphopenic condition by restoring CD8+ T cells. When combined with chemotherapy and CPIs, rhIL-7-hyFc administration enhanced antitumor response under intact andlymphopenic conditions by restoring CD8+ T cells. CONCLUSION: Taken together, these data demonstrate that rhIL-7-hyFc induces antitumor responses by generating T-cell-inflamed TME and provide a preclinical proof of concept of immunotherapy with rhIL-7-hyFc to enhance therapeutic responses in the clinic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA