Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
J Bone Oncol ; 45: 100592, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38450202

RESUMO

Metastasis is a major contributor to cancer patient mortality. Tumour cells often develop phenotypic plasticity to successfully metastasize to different target organs. Recent progress in the study of bone metastasis has provided novel insight into the biological processes that drive the spread and growth of cancer cells in the bone. In this review, we provide a summary of how the bone marrow microenvironment promotes phenotypic plasticity of metastatic tumour cells and alters therapeutic responses. We highlight pivotal transformations in cellular status driven by plasticity, including mesenchymal-epithelial transition, acquisition of stem-like traits, and awakening from dormancy. Additionally, we describe the phenomenon of host-organ mimicry and metabolic rewiring that collectively serve as key attributes of disseminated tumour cells, enabling their successful colonization and growth within the bone marrow microenvironment.

2.
PLoS Biol ; 22(2): e3002487, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324529

RESUMO

Epithelial-to-mesenchymal transition (EMT), a biological phenomenon of cellular plasticity initially reported in embryonic development, has been increasingly recognized for its importance in cancer progression and metastasis. Despite tremendous progress being made in the past 2 decades in our understanding of the molecular mechanism and functional importance of EMT in cancer, there are several mysteries around EMT that remain unresolved. In this Unsolved Mystery, we focus on the variety of EMT types in metastasis, cooperative and collective EMT behaviors, spatiotemporal characterization of EMT, and strategies of therapeutically targeting EMT. We also highlight new technical advances that will facilitate the efforts to elucidate the unsolved mysteries of EMT in metastasis.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Transição Epitelial-Mesenquimal , Desenvolvimento Embrionário , Metástase Neoplásica
3.
JACS Au ; 4(1): 139-149, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38274259

RESUMO

Triple-negative breast cancer is one of the most prevalent malignant cancers worldwide. Disrupting the MTDH-SND1 protein-protein interaction has recently been shown to be a promising strategy for breast cancer therapy. In this work, a novel potent stabilized peptide with a stronger binding affinity was obtained through rational structure-based optimization. Furthermore, a sulfonium-based peptide delivery system was established to improve the cell penetration and antitumor effects of stabilized peptides in metastatic breast cancer. Our study further broadens the in vivo applications of the stabilized peptides for blocking MTDH-SND1 interaction and provides promising opportunities for breast cancer therapy.

4.
Oncogene ; 42(27): 2183-2194, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258742

RESUMO

The SOX9 transcription factor ensures proper tissue development and homeostasis and has been implicated in promoting tumor progression. However, the role of SOX9 as a driver of lung adenocarcinoma (LUAD), or any cancer, remains unclear. Using CRISPR/Cas9 and Cre-LoxP gene knockout approaches in the KrasG12D-driven mouse LUAD model, we found that loss of Sox9 significantly reduces lung tumor development, burden and progression, contributing to significantly longer overall survival. SOX9 consistently drove organoid growth in vitro, but SOX9-promoted tumor growth was significantly attenuated in immunocompromised mice compared to syngeneic mice. We demonstrate that SOX9 suppresses immune cell infiltration and functionally suppresses tumor associated CD8+ T, natural killer and dendritic cells. These data were validated by flow cytometry, gene expression, RT-qPCR, and immunohistochemistry analyses in KrasG12D-driven murine LUAD, then confirmed by interrogating bulk and single-cell gene expression repertoires and immunohistochemistry in human LUAD. Notably, SOX9 significantly elevates collagen-related gene expression and substantially increases collagen fibers. We propose that SOX9 increases tumor stiffness and inhibits tumor-infiltrating dendritic cells, thereby suppressing CD8+ T cell and NK cell infiltration and activity. Thus, SOX9 drives KrasG12D-driven lung tumor progression and inhibits anti-tumor immunity at least partly by modulating the tumor microenvironment.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Camundongos , Humanos , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Genes ras , Microambiente Tumoral/genética
5.
Cold Spring Harb Perspect Med ; 13(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36987584

RESUMO

Cancer metastasis, or the development of secondary tumors in distant tissues, accounts for the vast majority of fatalities in patients with breast cancer. Breast cancer cells show a striking proclivity to metastasize to distinct organs, specifically the lung, liver, bone, and brain, where they face unique environmental pressures and a wide variety of tissue-resident cells that together create a strong barrier for tumor survival and growth. As a consequence, successful metastatic colonization is critically dependent on reciprocal cross talk between cancer cells and host cells within the target organ, a relationship that shapes the formation of a tumor-supportive microenvironment. Here, we discuss the mechanisms governing organ-specific metastasis in breast cancer, focusing on the intricate interactions between metastatic cells and specific niche cells within a secondary organ, and the remarkable adaptations of both compartments that cooperatively support cancer growth. More broadly, we aim to provide a framework for the microenvironmental prerequisites within each distinct metastatic site for successful breast cancer metastatic seeding and outgrowth.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Encéfalo/patologia , Fígado/patologia , Osso e Ossos/patologia , Metástase Neoplásica/patologia , Microambiente Tumoral
6.
Nature ; 614(7947): 349-357, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725930

RESUMO

Tissues derive ATP from two pathways-glycolysis and the tricarboxylic acid (TCA) cycle coupled to the electron transport chain. Most energy in mammals is produced via TCA metabolism1. In tumours, however, the absolute rates of these pathways remain unclear. Here we optimize tracer infusion approaches to measure the rates of glycolysis and the TCA cycle in healthy mouse tissues, Kras-mutant solid tumours, metastases and leukaemia. Then, given the rates of these two pathways, we calculate total ATP synthesis rates. We find that TCA cycle flux is suppressed in all five primary solid tumour models examined and is increased in lung metastases of breast cancer relative to primary orthotopic tumours. As expected, glycolysis flux is increased in tumours compared with healthy tissues (the Warburg effect2,3), but this increase is insufficient to compensate for low TCA flux in terms of ATP production. Thus, instead of being hypermetabolic, as commonly assumed, solid tumours generally produce ATP at a slower than normal rate. In mouse pancreatic cancer, this is accommodated by the downregulation of protein synthesis, one of this tissue's major energy costs. We propose that, as solid tumours develop, cancer cells shed energetically expensive tissue-specific functions, enabling uncontrolled growth despite a limited ability to produce ATP.


Assuntos
Trifosfato de Adenosina , Neoplasias da Mama , Ciclo do Ácido Cítrico , Desaceleração , Neoplasias Pulmonares , Metástase Neoplásica , Neoplasias Pancreáticas , Animais , Camundongos , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético , Glicólise , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Especificidade de Órgãos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Biossíntese de Proteínas
7.
Nat Commun ; 14(1): 558, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732513

RESUMO

Type 2 diabetes (T2D) is associated with ß-cell dedifferentiation. Aldehyde dehydrogenase 1 isoform A3 (ALHD1A3) is a marker of ß-cell dedifferentiation and correlates with T2D progression. However, it is unknown whether ALDH1A3 activity contributes to ß-cell failure, and whether the decrease of ALDH1A3-positive ß-cells (A+) following pair-feeding of diabetic animals is due to ß-cell restoration. To tackle these questions, we (i) investigated the fate of A+ cells during pair-feeding by lineage-tracing, (ii) somatically ablated ALDH1A3 in diabetic ß-cells, and (iii) used a novel selective ALDH1A3 inhibitor to treat diabetes. Lineage tracing and functional characterization show that A+ cells can be reconverted to functional, mature ß-cells. Genetic or pharmacological inhibition of ALDH1A3 in diabetic mice lowers glycemia and increases insulin secretion. Characterization of ß-cells following ALDH1A3 inhibition shows reactivation of differentiation as well as regeneration pathways. We conclude that ALDH1A3 inhibition offers a therapeutic strategy against ß-cell dysfunction in diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animais , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Linhagem Celular Tumoral , Células Secretoras de Insulina/metabolismo , Família Aldeído Desidrogenase 1 , Aldeído Oxirredutases/metabolismo
9.
Trends Cancer ; 9(1): 69-82, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184492

RESUMO

Development of cancer therapeutics has traditionally focused on targeting driver oncogenes. Such an approach is limited by toxicity to normal tissues and treatment resistance. A class of 'cancer fitness genes' with crucial roles in metastasis have been identified. Elevated or altered activities of these genes do not directly cause cancer; instead, they relieve the stresses that tumor cells encounter and help them adapt to a changing microenvironment, thus facilitating tumor progression and metastasis. Importantly, as normal cells do not experience high levels of stress under physiological conditions, targeting cancer fitness genes is less likely to cause toxicity to noncancerous tissues. Here, we summarize the key features and function of cancer fitness genes and discuss their therapeutic potential.


Assuntos
Neoplasias , Oncogenes , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Microambiente Tumoral/genética
10.
Cell Rep ; 41(11): 111827, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516759

RESUMO

The cancer metastasis process involves dysregulated oncogenic kinase signaling, but how this orchestrates metabolic networks and signal cascades to promote metastasis is largely unclear. Here we report that inhibition of glutamate dehydrogenase 1 (GDH1) and ribosomal S6 kinase 2 (RSK2) synergistically attenuates cell invasion, anoikis resistance, and immune escape in lung cancer and more evidently in tumors harboring epidermal growth factor receptor (EGFR)-activating or EGFR inhibitor-resistant mutations. Mechanistically, GDH1 is activated by EGFR through phosphorylation at tyrosine 135 and, together with RSK2, enhances the cAMP response element-binding protein (CREB) activity via CaMKIV signaling, thereby promoting metastasis. Co-targeting RSK2 and GDH1 leads to enhanced intratumoral CD8 T cell infiltration. Moreover, GDH1, RSK2, and CREB phosphorylation positively correlate with EGFR mutation and activation in lung cancer patient tumors. Our findings reveal a crosstalk between kinase, metabolic, and transcription machinery in metastasis and offer an alternative combinatorial therapeutic strategy to target metastatic cancers with activated EGFRs that are often EGFR therapy resistant.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Neoplasias Pulmonares , Humanos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pulmonares/patologia , Fosforilação , Linhagem Celular Tumoral
11.
J Med Chem ; 65(18): 12188-12199, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36044768

RESUMO

Blocking the interaction of MTDH/SND1 complex is an attractive strategy for cancer therapeutics. In this work, we designed and obtained a novel class of potent stabilized peptide inhibitors derived from MTDH sequence to disrupt MTDH/SND1 interaction. Through structure-based optimization and biological evaluation, stabilized peptides were obtained with tight binding affinity, improved cell penetration, and antitumor effects in the triple-negative breast cancer (TNBC) cells without nonspecific toxicity. To date, our study was the first report to demonstrate that stabilized peptides truncated from MTDH could serve as promising candidates to disrupt the MTDH/SND1 interaction for potential breast cancer treatment.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Neoplasias da Mama/patologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Endonucleases/metabolismo , Feminino , Humanos , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Proteínas de Ligação a RNA , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
13.
Cell Metab ; 34(4): 506-507, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385701

RESUMO

Immunotherapy has limited success in triple-negative breast cancer (TNBC). In this issue of Cell Metabolism, Wang et al. found that microbial metabolite TMAO boosts CD8+ T cell-mediated antitumor immunity by inducing pyroptosis in tumor cells, enhancing the efficacy of immunotherapy in TNBC (Wang et al., 2022).


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Imunidade Celular , Imunoterapia , Neoplasias de Mama Triplo Negativas/metabolismo
14.
Cell Rep ; 38(10): 110492, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263601

RESUMO

Immune checkpoint inhibitor (ICI) therapy is generating remarkable responses in individuals with cancer, but only a small portion of individuals with breast cancer respond well. Here we report that tumor-derived Jagged1 is a key regulator of the tumor immune microenvironment. Jagged1 promotes tumorigenesis in multiple spontaneous mammary tumor models. Through Jagged1-induced Notch activation, tumor cells increase expression and secretion of multiple cytokines to help recruit macrophages into the tumor microenvironment. Educated macrophages crosstalk with tumor-infiltrating T cells to inhibit T cell proliferation and tumoricidal activity. In individuals with triple-negative breast cancer, a high expression level of Jagged1 correlates with increased macrophage infiltration and decreased T cell activity. Co-administration of an ICI PD-1 antibody with a Notch inhibitor significantly inhibits tumor growth in breast cancer models. Our findings establish a distinct signaling cascade by which Jagged1 promotes adaptive immune evasion of tumor cells and provide several possible therapeutic targets.


Assuntos
Evasão da Resposta Imune , Neoplasias de Mama Triplo Negativas , Humanos , Macrófagos/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral
15.
Nat Cancer ; 3(3): 355-370, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35301507

RESUMO

Ligand-dependent corepressor (LCOR) mediates normal and malignant breast stem cell differentiation. Cancer stem cells (CSCs) generate phenotypic heterogeneity and drive therapy resistance, yet their role in immunotherapy is poorly understood. Here we show that immune-checkpoint blockade (ICB) therapy selects for LCORlow CSCs with reduced antigen processing/presentation machinery (APM) driving immune escape and ICB resistance in triple-negative breast cancer (TNBC). We unveil an unexpected function of LCOR as a master transcriptional activator of APM genes binding to IFN-stimulated response elements (ISREs) in an IFN signaling-independent manner. Through genetic modification of LCOR expression, we demonstrate its central role in modulation of tumor immunogenicity and ICB responsiveness. In TNBC, LCOR associates with ICB clinical response. Importantly, extracellular vesicle (EV) Lcor-messenger RNA therapy in combination with anti-PD-L1 overcame resistance and eradicated breast cancer metastasis in preclinical models. Collectively, these data support LCOR as a promising target for enhancement of ICB efficacy in TNBC, by boosting of tumor APM independently of IFN.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia , Interferons/farmacologia , Melanoma , Proteínas Repressoras/uso terapêutico , Neoplasias Cutâneas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Melanoma Maligno Cutâneo
16.
Nat Cancer ; 3(1): 60-74, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121988

RESUMO

Despite increased overall survival rates, curative options for metastatic breast cancer remain limited. We have previously shown that metadherin (MTDH) is frequently overexpressed in poor prognosis breast cancer, where it promotes metastasis and therapy resistance through its interaction with staphylococcal nuclease domain-containing 1 (SND1). Through genetic and pharmacological targeting of the MTDH-SND1 interaction, we reveal a key role for this complex in suppressing antitumor T cell responses in breast cancer. The MTDH-SND1 complex reduces tumor antigen presentation and inhibits T cell infiltration and activation by binding to and destabilizing Tap1/2 messenger RNAs, which encode key components of the antigen-presentation machinery. Following small-molecule compound C26-A6 treatment to disrupt the MTDH-SND1 complex, we showed enhanced immune surveillance and sensitivity to anti-programmed cell death protein 1 therapy in preclinical models of metastatic breast cancer, in support of this combination therapy as a viable approach to increase immune-checkpoint blockade therapy responses in metastatic breast cancer.


Assuntos
Neoplasias da Mama , Apresentação de Antígeno , Neoplasias da Mama/tratamento farmacológico , Endonucleases/metabolismo , Feminino , Humanos , Proteínas de Membrana/metabolismo , Nuclease do Micrococo/metabolismo , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
17.
Nat Cancer ; 3(1): 43-59, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121987

RESUMO

Metastatic breast cancer is a leading health burden worldwide. Previous studies have shown that metadherin (MTDH) promotes breast cancer initiation, metastasis and therapy resistance; however, the therapeutic potential of targeting MTDH remains largely unexplored. Here, we used genetically modified mice and demonstrate that genetic ablation of Mtdh inhibits breast cancer development through disrupting the interaction with staphylococcal nuclease domain-containing 1 (SND1), which is required to sustain breast cancer progression in established tumors. We performed a small-molecule compound screening to identify a class of specific inhibitors that disrupts the protein-protein interaction (PPI) between MTDH and SND1 and show that our lead candidate compounds C26-A2 and C26-A6 suppressed tumor growth and metastasis and enhanced chemotherapy sensitivity in preclinical models of triple-negative breast cancer (TNBC). Our results demonstrate a significant therapeutic potential in targeting the MTDH-SND1 complex and identify a new class of therapeutic agents for metastatic breast cancer.


Assuntos
Endonucleases/metabolismo , Proteínas de Membrana/metabolismo , Nuclease do Micrococo , Proteínas de Ligação a RNA/metabolismo , Neoplasias de Mama Triplo Negativas , Animais , Moléculas de Adesão Celular/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Proteínas de Ligação a RNA/genética , Fatores de Transcrição
18.
Bone ; 158: 115693, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33069922

RESUMO

Metastasis is responsible for a large majority of death from malignant solid tumors. Bone is one of the most frequently affected organs in cancer metastasis, especially in breast and prostate cancer. Development of bone metastasis requires cancer cells to successfully complete a number of challenging steps, including local invasion and intravasation, survival in circulation, extravasation and initial seeding, and finally, formation of metastatic colonies after a period of dormancy or indolent growth. During this process, cancer cells often undergo a series of cellular and molecular changes to gain cellular plasticity that helps them adapt to various environments they encounter along the journey of metastasis. Understanding the mechanisms behind cellular plasticity and adaptation during the formation of bone metastasis is crucial for the development of novel therapies.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Neoplasias Ósseas/secundário , Plasticidade Celular , Humanos , Masculino , Metástase Neoplásica
19.
Cancer Res ; 81(23): 5800-5802, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853039

RESUMO

Loss of E-cadherin expression has been well known as a hallmark of epithelial-mesenchymal transition (EMT), which is linked to increased risk of cancer metastasis. However, it was less clear whether E-cadherin and its downstream signaling pathways are functionally involved in driving EMT and the prometastatic phenotype. A study by Onder and colleagues in 2008 discovered that E-cadherin loss not only helps tumor cells detach from each other by breaking down cell-cell junctions but also elicits intracellular signaling events to confer a mesenchymal cell state and metastatic phenotype. This study established E-cadherin as an important global regulator, rather than just a marker, of EMT. The discovery inspired further investigation in the following decade that significantly deepened our understanding of E-cadherin and its diverse functions and more broadly of cellular plasticity in different stages and contexts of cancer metastasis.See related article by Onder and colleagues, Cancer Res 2008;68:3645-54.


Assuntos
Caderinas , Neoplasias , Caderinas/genética , Transição Epitelial-Mesenquimal , Humanos , Neoplasias/genética , Transdução de Sinais
20.
Am J Cancer Res ; 11(6): 3201-3211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249455

RESUMO

Relative survival is the ratio of overall survival (OS) over survival of the general population, and widely used in epidemiological studies. But it is artificially higher than OS and thus inferior to OS for cancer prognostication of individual patients. Moreover, trend-changes and disparities in OS of breast cancer are unclear while the relative survival of breast cancer has been reported on a regular basis. Therefore, we estimated trends in age-standardized 5-year OS of invasive breast cancer, using data from the Surveillance, Epidemiology, and End Results (SEER) cancer registry program and piecewise-linear regression models. Among 188,052 women with breast cancer diagnosed during 2007-2010 (SEER-18, 155,515 [79.3%] survived by year 5), the 5-year OS significantly differed by age, histology, tumor grade, tumor stage, hormone receptors, race/ethnicity, insurance status, region, rural-urban continuum and selected county-attributes. Among 469,498 women with breast cancer diagnosed during 1975-2010 (SEER-9) in the U.S., we observed an upward trend in the age-standardized 5-year OS (stage- and race/ethnicity-adjusted annual percentage change = 0.97 [95% CI, 0.76-1.18]). The 36-year trends/slopes in age-standardized 5-year OS of breast cancer differed by histology, tumor grade, stage, race/ethnicity, region and socioeconomic attributes of the patient's residence-county, but not by those of rural-urban continuum. The 3-joinpoint model on the 36-year trend identified significant slope changes in 1983, 1987 and 2000, with the largest slope (2.5%/year) during 1983-1987. In conclusion, we here show trends in the age-standardized 5-year OS among U.S. women with breast cancer changed in diagnosis-years of 1983, 1987 and 2000, and differed by tumor characteristics and race/ethnicity. More efforts are needed to understand the trend changes and to address the OS disparities of breast cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA