Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 59(8): 961-978.e7, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38508181

RESUMO

Trans-differentiation represents a direct lineage conversion; however, insufficient characterization of this process hinders its potential applications. Here, to explore a potential universal principal for trans-differentiation, we performed single-cell transcriptomic analysis of endothelial-to-hematopoietic transition (EHT), endothelial-to-mesenchymal transition, and epithelial-to-mesenchymal transition in mouse embryos. We applied three scoring indexes of entropies, cell-type signature transcription factor expression, and critical transition signals to show common features underpinning the fate plasticity of transition states. Cross-model comparison identified inflammatory-featured transition states and a common trigger role of interleukin-33 in promoting fate conversions. Multimodal profiling (integrative transcriptomic and chromatin accessibility analysis) demonstrated the inflammatory regulation of hematopoietic specification. Furthermore, multimodal omics and fate-mapping analyses showed that endothelium-specific Spi1, as an inflammatory effector, governs appropriate chromatin accessibility and transcriptional programs to safeguard EHT. Overall, our study employs single-cell omics to identify critical transition states/signals and the common trigger role of inflammatory signaling in developmental-stress-induced fate conversions.


Assuntos
Transdiferenciação Celular , Embrião de Mamíferos , Inflamação , Transdução de Sinais , Análise de Célula Única , Animais , Camundongos , Análise de Célula Única/métodos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Embrião de Mamíferos/metabolismo , Transição Epitelial-Mesenquimal , Regulação da Expressão Gênica no Desenvolvimento , Transcriptoma/genética , Células Endoteliais/metabolismo
2.
Nat Cell Biol ; 25(9): 1265-1278, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37652981

RESUMO

Despite advances in four-factor (4F)-induced reprogramming (4FR) in vitro and in vivo, how 4FR interconnects with senescence remains largely under investigated. Here, using genetic and chemical approaches to manipulate senescent cells, we show that removal of p16High cells resulted in the 4FR of somatic cells into totipotent-like stem cells. These cells expressed markers of both pluripotency and the two-cell embryonic state, readily formed implantation-competent blastoids and, following morula aggregation, contributed to embryonic and extraembryonic lineages. We identified senescence-dependent regulation of nicotinamide N-methyltransferase as a key mechanism controlling the S-adenosyl-L-methionine levels during 4FR that was required for expression of the two-cell genes and acquisition of an extraembryonic potential. Importantly, a partial 4F epigenetic reprogramming in old mice was able to reverse several markers of liver aging only in conjunction with the depletion of p16High cells. Our results show that the presence of p16High senescent cells limits cell plasticity, whereas their depletion can promote a totipotent-like state and histopathological tissue rejuvenation during 4F reprogramming.


Assuntos
Plasticidade Celular , Reprogramação Celular , Animais , Camundongos , Reprogramação Celular/genética , Envelhecimento/genética , Implantação do Embrião , Epigenômica
3.
Cell Res ; 32(1): 38-53, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34341490

RESUMO

Limited knowledge of cellular and molecular mechanisms underlying hematopoietic stem cell and multipotent progenitor (HSC/MPP) expansion within their native niche has impeded the application of stem cell-based therapies for hematological malignancies. Here, we constructed a spatiotemporal transcriptome map of mouse fetal liver (FL) as a platform for hypothesis generation and subsequent experimental validation of novel regulatory mechanisms. Single-cell transcriptomics revealed three transcriptionally heterogeneous HSC/MPP subsets, among which a CD93-enriched subset exhibited enhanced stem cell properties. Moreover, by employing integrative analysis of single-cell and spatial transcriptomics, we identified novel HSC/MPP 'pocket-like' units (HSC PLUS), composed of niche cells (hepatoblasts, stromal cells, endothelial cells, and macrophages) and enriched with growth factors. Unexpectedly, macrophages showed an 11-fold enrichment in the HSC PLUS. Functionally, macrophage-HSC/MPP co-culture assay and candidate molecule testing, respectively, validated the supportive role of macrophages and growth factors (MDK, PTN, and IGFBP5) in HSC/MPP expansion. Finally, cross-species analysis and functional validation showed conserved cell-cell interactions and expansion mechanisms but divergent transcriptome signatures between mouse and human FL HSCs/MPPs. Taken together, these results provide an essential resource for understanding HSC/MPP development in FL, and novel insight into functional HSC/MPP expansion ex vivo.


Assuntos
Células Endoteliais , Transcriptoma , Animais , Hematopoese/genética , Células-Tronco Hematopoéticas , Fígado , Camundongos
4.
Dev Cell ; 56(14): 2121-2133.e6, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34197725

RESUMO

Macrophages play pivotal roles in immunity, hematopoiesis, and tissue homeostasis. In mammals, macrophages have been shown to originate from yolk-sac-derived erythro-myeloid progenitors and aorta-gonad-mesonephros (AGM)-derived hematopoietic stem cells. However, whether macrophages can arise from other embryonic sites remains unclear. Here, using single-cell RNA sequencing, we profile the transcriptional landscape of mouse fetal placental hematopoiesis. We uncover and experimentally validate that a CD44+ subpopulation of placental endothelial cells (ECs) exhibits hemogenic potential. Importantly, lineage tracing using the newly generated Hoxa13 reporter line shows that Hoxa13-labeled ECs can produce placental macrophages, named Hofbauer cell (HBC)-like cells. Furthermore, we identify two subtypes of HBC-like cells, and cell-cell interaction analysis identifies their potential roles in angiogenesis and antigen presentation, separately. Our study provides a comprehensive understanding of placental hematopoiesis and highlights the placenta as a source of macrophages, which has important implications for both basic and translational research.


Assuntos
Linhagem da Célula , Hemangioblastos/citologia , Hematopoese , Células-Tronco Hematopoéticas/citologia , Macrófagos/citologia , Placenta/citologia , Animais , Feminino , Hemangioblastos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Placenta/metabolismo , Gravidez , Análise de Célula Única , Transcriptoma
5.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941687

RESUMO

Here, we present a physiologically relevant model of the human pulmonary alveoli. This alveolar lung-on-a-chip platform is composed of a three-dimensional porous hydrogel made of gelatin methacryloyl with an inverse opal structure, bonded to a compartmentalized polydimethylsiloxane chip. The inverse opal hydrogel structure features well-defined, interconnected pores with high similarity to human alveolar sacs. By populating the sacs with primary human alveolar epithelial cells, functional epithelial monolayers are readily formed. Cyclic strain is integrated into the device to allow biomimetic breathing events of the alveolar lung, which, in addition, makes it possible to investigate pathological effects such as those incurred by cigarette smoking and severe acute respiratory syndrome coronavirus 2 pseudoviral infection. Our study demonstrates a unique method for reconstitution of the functional human pulmonary alveoli in vitro, which is anticipated to pave the way for investigating relevant physiological and pathological events in the human distal lung.


Assuntos
Dispositivos Lab-On-A-Chip , Modelos Biológicos , Alvéolos Pulmonares/fisiologia , Células Epiteliais Alveolares , Antivirais/farmacologia , Fumar Cigarros/efeitos adversos , Dimetilpolisiloxanos/química , Gelatina/química , Humanos , Hidrogéis/química , Metacrilatos/química , Porosidade , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/patologia , Respiração , Mucosa Respiratória/citologia , Mucosa Respiratória/fisiologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade
6.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33785593

RESUMO

During vertebrate embryogenesis, fetal hematopoietic stem and progenitor cells (HSPCs) exhibit expansion and differentiation properties in a supportive hematopoietic niche. To profile the developmental landscape of fetal HSPCs and their local niche, here, using single-cell RNA-sequencing, we deciphered a dynamic atlas covering 28,777 cells and 9 major cell types (23 clusters) of zebrafish caudal hematopoietic tissue (CHT). We characterized four heterogeneous HSPCs with distinct lineage priming and metabolic gene signatures. Furthermore, we investigated the regulatory mechanism of CHT niche components for HSPC development, with a focus on the transcription factors and ligand-receptor networks involved in HSPC expansion. Importantly, we identified an endothelial cell-specific G protein-coupled receptor 182, followed by in vivo and in vitro functional validation of its evolutionally conserved role in supporting HSPC expansion in zebrafish and mice. Finally, comparison between zebrafish CHT and human fetal liver highlighted the conservation and divergence across evolution. These findings enhance our understanding of the regulatory mechanism underlying hematopoietic niche for HSPC expansion in vivo and provide insights into improving protocols for HSPC expansion in vitro.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas/fisiologia , Nicho de Células-Tronco , Animais , Linhagem da Célula , Feto/metabolismo , Perfilação da Expressão Gênica , Humanos , Fígado/metabolismo , Camundongos , Análise de Célula Única , Peixe-Zebra
7.
Blood ; 137(2): 190-202, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-32756943

RESUMO

Nascent hematopoietic stem and progenitor cells (HSPCs) acquire definitive hematopoietic characteristics only when they develop into fetal HSPCs; however, the mechanisms underlying fetal HSPC development are poorly understood. Here, we profiled the chromatin accessibility and transcriptional features of zebrafish nascent and fetal HSPCs using ATAC-seq and RNA-seq and revealed dynamic changes during HSPC transition. Functional assays demonstrated that chromatin remodeler-mediated epigenetic programming facilitates fetal HSPC development in vertebrates. Systematical screening of chromatin remodeler-related genes identified that smarca5 is responsible for the maintenance of chromatin accessibility at promoters of hematopoiesis-related genes in fetal HSPCs. Mechanistically, Smarca5 interacts with nucleolin to promote chromatin remodeling, thereby facilitating genomic binding of transcription factors to regulate expression of hematopoietic regulators such as bcl11ab. Our results unravel a new role of epigenetic regulation and reveal that Smarca5-mediated epigenetic programming is responsible for fetal HSPC development, which will provide new insights into the generation of functional HSPCs both in vivo and in vitro.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Epigênese Genética/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Proteínas de Peixe-Zebra/metabolismo , Adenosina Trifosfatases/genética , Animais , Proteínas Cromossômicas não Histona/genética , Camundongos , Camundongos Endogâmicos C57BL , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
8.
Nanotechnology ; 32(3): 035701, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33089829

RESUMO

In this study, a facile method was prepared to fabricate highly flexible, conductive and superhydrophobic polymer fabrics. Copper nanoparticles (CuNPs) were decorated on polypropylene fabrics using a simple spraying method and superhydrophobicity was obtained after vacuum drying for 4 h without any surface modifier. Accumulation of CuNPs constituted coral-like rough micro-nano structures, forming a stable Cassie model and endowing the surface with dense charge transport pathways, thus resulting in excellent superhydrophobicity (water contact angle ∼159°, sliding angle ∼2.3°) and conductivity (sheet resistance ∼0.92 Ω sq-1). The fabrics displayed superior waterproof and self-cleaning properties, as well as great sustainability in the water. Additionally, the superhydrophobicity and conductivity can be almost maintained after heat treatment, wear testing, water droplet impinging, weak alkali/acid treatment and repeated bending-kneading tests. These superhydrophobic and conductive fabrics that are free from moisture and pollution can be a reliable candidate to solve the water-penetration issue in the rapid development of flexible electronics.

9.
Cancer Biomark ; 26(1): 69-77, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31306108

RESUMO

Growing evidence have revealed the serum exosomal miRNAs emerged as biomarkers for various cancer types, including colorectal cancer (CRC). Here, we sought to explore the potential clinical significance of serum exosomal miR-150-5p in CRC. A total of 133 CRC patients and 60 healthy volunteers as control group were recruited in this study. Exosomes were isolated from the serum of all the participants. The total RNA was isolated from the exosomes and the serum exosomal miR-150-5p levels were measured by quantitative reverse transcription-polymerase chain reaction. The findings showed that the serum exosomal miR-150-5p levels were significantly reduced in CRC cases compared with those in the control group. Serum exosomal miR-150-5p levels in post-operative blood samples were greatly upregulated one month after surgical treatment. In addition, decreased serum exosomal miR-150-5p expression was closely correlated with poorly differentiation, positive lymph node metastasis and advanced TNM stage. Moreover, receiver operating characteristic (ROC) curve analysis showed serum exosomal miR-150-5p level had good performance to identify CRC cases from healthy volunteers, and a combination of serum exosomal miR-150-5p and carcinoembryonic antigen (CEA) could improve the diagnostic accuracy with an increased the area under the ROC curve (AUC) value. Furthermore, the survival time of patients with higher serum exosomal miR-150-5p expression was significantly longer than those with lower expression. Serum exosomal miR-150-5p was confirmed as an independent prognostic indicator in CRC. Mechanistically, ZEB1 was identified as a direct downstream target of miR-150-5p. Collectively, serum exosomal miR-150-5p might be a novel noninvasive biomarker for CRC diagnosis and prognosis.


Assuntos
Neoplasias Colorretais/sangue , Exossomos/metabolismo , MicroRNAs/sangue , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Regulação para Baixo , Exossomos/genética , Feminino , Células HCT116 , Células HT29 , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Homeobox 1 de Ligação a E-box em Dedo de Zinco/sangue , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA