Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; 43(7): 649-67, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23768111

RESUMO

Pseudomonas oleovorans PAMD_1 produced an intracellular azoreductase as the more prominent enzyme that reduces the azo bridge during the azo dye decolorization process. In order to optimize the expression of azoreductase, statistically based experiments were applied. Eleven significant factors were screened on decolorization activity using Plackett-Burman design. Dye, NADH, glucose, and peptone were identified as having highest positive influence on the decolorization activity. Central composite design of response surface methodology was employed for the concerted effect of these four factors on decolorization activity. This method showed that the optimum medium containing dye (200 mg L(-1)), NADH (1.14 mM), glucose (2.07 g L(-1)), and peptone (6.44 g L(-1)) for the decolorization of Orange II up to 87% in 48 hr. The applied methodology was validated through the adequacy and accuracy of the overall experiments, and the results proved that the applied methods were most effective. Further, the enzyme was purified ninefold with 16% yield by anion-exchange chromatography and a specific activity of 26 U mg(-1). The purified enzyme with a molecular mass of 29,000 Da gave a single band on sodium dodecyl sulfate (SDS) gel, and the degradation products sulfanilic acid and 1-amino-2-napthol of Orange II by azoreductase were analyzed by using an ultraviolet-visible (UV-Vis) spectrophotometer and hish-performance liquid chromatography (HPLC).


Assuntos
Biodegradação Ambiental , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/isolamento & purificação , Pseudomonas oleovorans/enzimologia , Compostos Azo/síntese química , Compostos Azo/química , Benzenossulfonatos/síntese química , Benzenossulfonatos/química , Corantes/química , Corantes/isolamento & purificação , Humanos , Cinética , NADH NADPH Oxirredutases/metabolismo , Nitrorredutases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA