Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Genes (Basel) ; 15(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38927645

RESUMO

With the rapid development of gene therapy technology in recent years, its abuse as a method of sports doping in athletics has become a concern. However, there is still room for improvement in gene-doping testing methods, and a robust animal model needs to be developed. Therefore, the purposes of this study were to establish a model of gene doping using recombinant adeno-associated virus vector-9, including the human erythropoietin gene (rAAV9-hEPO), and to establish a relevant testing method. First, it was attempted to establish the model using rAAV9-hEPO on mice. The results showed a significant increase in erythrocyte volume accompanied by an increase in spleen weight, confirming the validity of the model. Next, we attempted to detect proof of gene doping by targeting DNA and RNA. Direct proof of gene doping was detected using a TaqMan-qPCR assay with certain primers/probes. In addition, some indirect proof was identified in RNAs through the combination of a TB Green qPCR assay with RNA sequencing. Taken together, these results could provide the foundation for an effective test for gene doping in human athletes in the future.


Assuntos
Dependovirus , Dopagem Esportivo , Eritropoetina , Vetores Genéticos , Eritropoetina/genética , Animais , Camundongos , Dopagem Esportivo/métodos , Dependovirus/genética , Humanos , Vetores Genéticos/genética , Masculino , Terapia Genética/métodos , Modelos Animais
2.
Cell Death Discov ; 8(1): 480, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470862

RESUMO

Chronic kidney disease (CKD) affects kidney cancer patients' mortality. However, the underlying mechanism remains unknown. M2-like macrophages have pro-tumor functions, also exist in injured kidney, and promote kidney fibrosis. Thus, it is suspected that M2-like macrophages in injured kidney induce the pro-tumor microenvironment leading to kidney cancer progression. We found that M2-like macrophages present in the injured kidney promoted kidney cancer progression and induced resistance to anti-PD1 antibody through its pro-tumor function and inhibition of CD8+ T cell infiltration. RNA-seq revealed Slc7a11 was upregulated in M2-like macrophages. Inhibition of Slc7a11 with sulfasalazine inhibited the pro-tumor function of M2-like macrophages and synergized with anti-PD1 antibody. Moreover, SLC7A11-positive macrophages were associated with poor prognosis among kidney cancer patients. Collectively, this study dissects the characteristic microenvironment in the injured kidney that contributed to kidney cancer progression and anti-PD1 antibody resistance. This insight offers promising combination therapy with anti-PD1 antibody and macrophage targeted therapy.

3.
Biochem Biophys Res Commun ; 605: 16-23, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35306360

RESUMO

Vascular endothelial growth factor (VEGF) signaling plays a central role in vascular development and maintenance of vascular homeostasis. In endothelial cells (ECs), VEGF activates the gene expression of angiogenic transcription factors (TFs), followed by induction of downstream angiogenic responsive genes. Recent findings support that histone modification dynamics contribute to the transcriptional control of genes that are important for EC functions. Lysine demethylase 2B (KDM2B) demethylates histone H3K4me3 and H3K36me2/3 and mediates the monoubiquitination of histone H2AK119. KDM2B functions as a transcriptional repressor in somatic cell reprogramming and tumor development. However, the role of KDM2B in VEGF signaling remains to be elucidated. Here, we show that KDM2B knockdown enhances VEGF-induced angiogenesis in cultured human ECs via increased migration and proliferation. In contrast, ectopic expression of KDM2B inhibits angiogenesis. The function of KDM2B may depend on its catalytic Jumonji C domain. Genome-wide analysis further reveals that KDM2B selectively controls the transcription of VEGF-induced angiogenic TFs that are associated with increased H3K4me3/H3K36me3 and decreased H2AK119ub. These findings suggest an essential role of KDM2B in VEGF signaling in ECs. As dysregulation of VEGF signaling in ECs is involved in various diseases, including cancer, KDM2B may be a potential therapeutic target in VEGF-mediated vasculopathic diseases.


Assuntos
Proteínas F-Box , Histonas , Proliferação de Células , Células Endoteliais/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina/metabolismo , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Cell Rep ; 38(6): 110332, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35139389

RESUMO

Endothelial cells (ECs) are phenotypically heterogeneous, mainly due to their dynamic response to the tissue microenvironment. Vascular endothelial cell growth factor (VEGF), the best-known angiogenic factor, activates calcium-nuclear factor of activated T cells (NFAT) signaling following acute angiogenic gene transcription. Here, we evaluate the global mapping of VEGF-mediated dynamic transcriptional events, focusing on major histone-code profiles using chromatin immunoprecipitation sequencing (ChIP-seq). Remarkably, the gene loci of immediate-early angiogenic transcription factors (TFs) exclusively acquire bivalent H3K4me3-H3K27me3 double-positive histone marks after the VEGF stimulus. Moreover, NFAT-associated Pax transactivation domain-interacting protein (PTIP) directs bivalently marked TF genes transcription through a limited polymerase II running. The non-canonical polycomb1 variant PRC1.3 specifically binds to and allows the transactivation of PRC2-enriched bivalent angiogenic TFs until conventional PRC1-mediated gene silencing is achieved. Knockdown of these genes abrogates post-natal aberrant neovessel formation via the selective inhibition of indispensable bivalent angiogenic TF gene transcription. Collectively, the reported dynamic histone mark landscape may uncover the importance of immediate-early genes and the development of advanced anti-angiogenic strategies.


Assuntos
Indutores da Angiogênese/metabolismo , Genes Precoces/genética , Histonas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Imunoprecipitação da Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Células Endoteliais/metabolismo , Epigênese Genética/genética , Inativação Gênica/fisiologia , Humanos , Camundongos , Neovascularização Patológica/genética , Regiões Promotoras Genéticas/genética
5.
FEBS J ; 289(19): 5762-5775, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34173323

RESUMO

Acute and chronic inflammation is a basic pathological event that contributes to atherosclerosis, cancer, infectious diseases, and immune disorders. Inflammation is an adaptive process to both external and internal stimuli experienced by the human body. Although the mechanism of gene transcription is highly complicated and orchestrated in a timely and spatial manner, recent developments in next-generation sequencing, genome-editing, cryo-electron microscopy, and single cell-based technologies could provide us with insights into the roles of super enhancers (SEs). Initially, SEs were implicated in determining cell fate; subsequent studies have clarified that SEs are associated with various pathological conditions, including cancer and inflammatory diseases. Recent technological advances have unveiled the molecular mechanisms of SEs, which involve epigenetic histone modifications, chromatin three-dimensional structures, and phase-separated condensates. In this review, we discuss the relationship between inflammation and SEs and the therapeutic potential of SEs for inflammatory diseases.


Assuntos
Elementos Facilitadores Genéticos , Neoplasias , Cromatina , Microscopia Crioeletrônica , Humanos , Inflamação/genética , Neoplasias/genética , Transcrição Gênica
6.
Genes (Basel) ; 12(8)2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34440425

RESUMO

Despite the World Anti-Doping Agency (WADA) ban on gene doping in the context of advancements in gene therapy, the risk of EPO gene-based doping among athletes is still present. To address this and similar risks, gene-doping tests are being developed in doping control laboratories worldwide. In this regard, the present study was performed with two objectives: to develop a robust gene-doping mouse model with the human EPO gene (hEPO) transferred using recombinant adenovirus (rAdV) as a vector and to develop a detection method to identify gene doping by using this model. The rAdV including the hEPO gene was injected intravenously to transfer the gene to the liver. After injection, the mice showed significantly increased whole-blood red blood cell counts and increased expression of hematopoietic marker genes in the spleen, indicating successful development of the gene-doping model. Next, direct and potentially indirect proof of gene doping were evaluated in whole-blood DNA and RNA by using a quantitative PCR assay and RNA sequencing. Proof of doping could be detected in DNA and RNA samples from one drop of whole blood for approximately a month; furthermore, the overall RNA expression profiles showed significant changes, allowing advanced detection of hEPO gene doping.


Assuntos
Dopagem Esportivo , Eritropoetina/genética , Terapia Genética , Vetores Genéticos/genética , Adenoviridae/genética , Animais , Atletas , Eritropoetina/uso terapêutico , Vetores Genéticos/uso terapêutico , Humanos , Camundongos , Camundongos Transgênicos , Modelos Animais
7.
Cancer Sci ; 112(7): 2855-2869, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33970549

RESUMO

Ten-eleven translocation 1 (TET1) is an essential methylcytosine dioxygenase of the DNA demethylation pathway. Despite its dysregulation being known to occur in human cancer, the role of TET1 remains poorly understood. In this study, we report that TET1 promotes cell growth in human liver cancer. The transcriptome analysis of 68 clinical liver samples revealed a subgroup of TET1-upregulated hepatocellular carcinoma (HCC), demonstrating hepatoblast-like gene expression signatures. We performed comprehensive cytosine methylation and hydroxymethylation (5-hmC) profiling and found that 5-hmC was aberrantly deposited preferentially in active enhancers. TET1 knockdown in hepatoma cell lines decreased hmC deposition with cell growth suppression. HMGA2 was highly expressed in a TET1high subgroup of HCC, associated with the hyperhydroxymethylation of its intronic region, marked as histone H3K4-monomethylated, where the H3K27-acetylated active enhancer chromatin state induced interactions with its promoter. Collectively, our findings point to a novel type of epigenetic dysregulation, methylcytosine dioxygenase TET1, which promotes cell proliferation via the ectopic enhancer of its oncogenic targets, HMGA2, in hepatoblast-like HCC.


Assuntos
Proteína HMGA2/genética , Neoplasias Hepáticas/genética , Oxigenases de Função Mista/genética , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Cromatina/genética , Citosina/metabolismo , Metilação de DNA , Dioxigenases/metabolismo , Epigênese Genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Proteína HMGA2/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Oxigenases de Função Mista/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Regulação para Cima
8.
EMBO J ; 39(7): e103949, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32125007

RESUMO

Histone H3 lysine-9 di-methylation (H3K9me2) and lysine-27 tri-methylation (H3K27me3) are linked to repression of gene expression, but the functions of repressive histone methylation dynamics during inflammatory responses remain enigmatic. Here, we report that lysine demethylases 7A (KDM7A) and 6A (UTX) play crucial roles in tumor necrosis factor (TNF)-α signaling in endothelial cells (ECs), where they are regulated by a novel TNF-α-responsive microRNA, miR-3679-5p. TNF-α rapidly induces co-occupancy of KDM7A and UTX at nuclear factor kappa-B (NF-κB)-associated elements in human ECs. KDM7A and UTX demethylate H3K9me2 and H3K27me3, respectively, and are both required for activation of NF-κB-dependent inflammatory genes. Chromosome conformation capture-based methods furthermore uncover increased interactions between TNF-α-induced super enhancers at NF-κB-relevant loci, coinciding with KDM7A and UTX recruitments. Simultaneous pharmacological inhibition of KDM7A and UTX significantly reduces leukocyte adhesion in mice, establishing the biological and potential translational relevance of this mechanism. Collectively, these findings suggest that rapid erasure of repressive histone marks by KDM7A and UTX is essential for NF-κB-dependent regulation of genes that control inflammatory responses of ECs.


Assuntos
Células Endoteliais/imunologia , Histona Desmetilases/metabolismo , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , MicroRNAs/genética , Animais , Adesão Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Histonas/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Lisina/metabolismo , Masculino , Metilação , Camundongos , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
9.
Biochem Biophys Res Commun ; 524(1): 57-63, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31980180

RESUMO

In normal development, the rate of cell differentiation is tightly controlled and critical for normal development and stem cell differentiation. However, the underlying mechanisms regulating the rate of the differentiation are unknown, and manipulation of the rate of the stem cell differentiation is currently difficult. Here we show that activation of protein kinase A (PKA) accelerates the rate of mouse embryonic stem cell (ESC) differentiation through an early loss of ESC pluripotency markers and early appearance of mesodermal and other germ layer cells. The activation of PKA hastened differentiation by increasing the expression of a histone H3 lysine 9 (H3K9) dimethyltransferase, G9a protein, and the level of a negative epigenetic histone mark, H3K9 dimethylation (H3K9me2), in the promoter regions of the pluripotency markers Nanog and Oct4. These results elucidate a novel role of PKA on ESC differentiation and offer an experimental model for controlling the rate of ESC differentiation.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Metilação , Camundongos , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Transdução de Sinais
10.
Semin Cancer Biol ; 67(Pt 1): 39-48, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31536760

RESUMO

Over the last decade, the development and progress of next-generation sequencers incorporated with classical biochemical analyses have drastically produced novel insights into transcription factors, including Sry-like high-mobility group box (SOX) factors. In addition to their primary functions in binding to and activating specific downstream genes, transcription factors also participate in the dedifferentiation or direct reprogramming of somatic cells to undifferentiated cells or specific lineage cells. Since the discovery of SOX factors, members of the SOXF (SOX7, SOX17, and SOX18) family have been identified to play broad roles, especially with regard to cardiovascular development. More recently, SOXF factors have been recognized as crucial players in determining the cell fate and in the regulation of cancer cells. Here, we provide an overview of research on the mechanism by which SOXF factors regulate development and cancer, and discuss their potential as new targets for cancer drugs while offering insight into novel mechanistic transcriptional regulation during cell lineage commitment.


Assuntos
Neoplasias/patologia , Fatores de Transcrição SOX/metabolismo , Animais , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Fatores de Transcrição SOX/genética , Transdução de Sinais
11.
Cell Rep ; 29(1): 89-103.e7, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577958

RESUMO

Tolerance to severe tumor microenvironments, including hypoxia and nutrient starvation, is a common feature of aggressive cancer cells and can be targeted. However, metabolic alterations that support cancer cells upon nutrient starvation are not well understood. Here, by comprehensive metabolome analyses, we show that glutamine deprivation leads to phosphoethanolamine (PEtn) accumulation in cancer cells via the downregulation of PEtn cytidylyltransferase (PCYT2), a rate-limiting enzyme of phosphatidylethanolamine biosynthesis. PEtn accumulation correlated with tumor growth under nutrient starvation. PCYT2 suppression was partially mediated by downregulation of the transcription factor ELF3. Furthermore, PCYT2 overexpression reduced PEtn levels and tumor growth. In addition, PEtn accumulation and PCYT2 downregulation in human breast tumors correlated with poor prognosis. Thus, we show that glutamine deprivation leads to tumor progression by regulating PE biosynthesis via the ELF3-PCYT2 axis. Furthermore, manipulating glutamine-responsive genes could be a therapeutic approach to limit cancer progression.


Assuntos
Regulação para Baixo/genética , Etanolaminas/metabolismo , Glutamina/metabolismo , RNA Nucleotidiltransferases/genética , Inanição/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Progressão da Doença , Células HeLa , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-ets/genética , Transcrição Gênica/genética
12.
PLoS Genet ; 14(11): e1007826, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30500808

RESUMO

Endothelial cell (EC) plasticity in pathological settings has recently been recognized as a driver of disease progression. Endothelial-to-mesenchymal transition (EndMT), in which ECs acquire mesenchymal properties, has been described for a wide range of pathologies, including cancer. However, the mechanism regulating EndMT in the tumor microenvironment and the contribution of EndMT in tumor progression are not fully understood. Here, we found that combined knockdown of two ETS family transcription factors, ERG and FLI1, induces EndMT coupled with dynamic epigenetic changes in ECs. Genome-wide analyses revealed that ERG and FLI1 are critical transcriptional activators for EC-specific genes, among which microRNA-126 partially contributes to blocking the induction of EndMT. Moreover, we demonstrated that ERG and FLI1 expression is downregulated in ECs within tumors by soluble factors enriched in the tumor microenvironment. These data provide new insight into the mechanism of EndMT, functions of ERG and FLI1 in ECs, and EC behavior in pathological conditions.


Assuntos
Transição Epitelial-Mesenquimal/genética , Proteína Proto-Oncogênica c-fli-1/genética , Animais , Regulação para Baixo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Epigênese Genética , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Prognóstico , Proteína Proto-Oncogênica c-fli-1/antagonistas & inibidores , Proteína Proto-Oncogênica c-fli-1/metabolismo , Regulador Transcricional ERG/antagonistas & inibidores , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo , Microambiente Tumoral/genética
13.
Sci Rep ; 8(1): 3779, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491489

RESUMO

Tubulointerstitial fibrosis has been recently reported to be caused by the collapse of the epigenetic regulation of kidney diseases. We examined whether pharmacological inhibition of histone modification is effective against renal fibrosis. DZNep (3-deazaneplanocin A) was originally developed as an anti-cancer drug to inhibit the repressive histone mark, H3K27me3. We used a model of chronic tubulointerstitial fibrosis induced by unilateral ischaemia/reperfusion and administered DZNep intravenously to the mice for 8 weeks. We found DZNep contributes to the reduction of tubulointerstitial fibrosis. We selected only tubular cells from in vivo samples using laser-capture microdissection because epigenetic regulation is specific to the cell types, and we focused on the changes in the tubular cells. We performed a genome-wide analysis of tubular cells using high-throughput sequencing (RNA-seq) to identify novel epigenetic factors associated with renal fibrosis. We found that pro-fibrotic genes such as COL3A1 (collagen type 3a1) and TIMP2 (tissue inhibitor of metalloproteinase 2) were suppressed by DZNep in vivo. In addition, pro-fibrotic genes such as COL4A1 (collagen type 4a1), TIMP2 and MMP14 were down-regulated by DZNep in vitro. In conclusion, we found that pharmacological epigenetic modification by DZNep decreased the expression levels of fibrogenic genes in tubular cells and inhibited tubulointerstitial fibrosis.


Assuntos
Adenosina/análogos & derivados , Biomarcadores/análise , Fibrose/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Genoma , Nefropatias/tratamento farmacológico , Traumatismo por Reperfusão/complicações , Adenosina/farmacologia , Animais , Células Cultivadas , Fibrose/etiologia , Fibrose/patologia , Perfilação da Expressão Gênica , Humanos , Nefropatias/etiologia , Nefropatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
Cell Rep ; 22(2): 546-556, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29320747

RESUMO

Here, we find that human-induced pluripotent stem cell (hiPSC)-derived cardiomyocyte (CM)-fated progenitors (CFPs) that express a tetraspanin family glycoprotein, CD82, almost exclusively differentiate into CMs both in vitro and in vivo. CD82 is transiently expressed in late-stage mesoderm cells during hiPSC differentiation. Purified CD82+ cells gave rise to CMs under nonspecific in vitro culture conditions with serum, as well as in vivo after transplantation to the subrenal space or injured hearts in mice, indicating that CD82 successfully marks CFPs. CD82 overexpression in mesoderm cells as well as in undifferentiated hiPSCs increased the secretion of exosomes containing ß-catenin and reduced nuclear ß-catenin protein, suggesting that CD82 is involved in fated restriction to CMs through Wnt signaling inhibition. This study may contribute to the understanding of CM differentiation mechanisms and to cardiac regeneration strategies.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína Kangai-1/genética , Miócitos Cardíacos/metabolismo , Diferenciação Celular , Humanos
15.
Physiol Rep ; 5(8)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28420760

RESUMO

Chronic tubulointerstitial hypoxia plays an important role as the final common pathway to end-stage renal disease. HIF-1 (hypoxia-inducible factor-1) is a master transcriptional factor under hypoxia, regulating downstream target genes. Genome-wide analysis of HIF-1 binding sites using high-throughput sequencers has clarified various kinds of downstream targets and made it possible to demonstrate the novel roles of HIF-1. Our aim of this study is to identify novel HIF-1 downstream epigenetic targets which may play important roles in the kidney. Immortalized tubular cell lines (HK2; human kidney-2) and primary cultured cells (RPTEC; renal proximal tubular cell lines) were exposed to 1% hypoxia for 24-72 h. We performed RNA-seq to clarify the expression of mRNA and long non-coding RNA (lncRNA). We also examined ChIP-seq to identify HIF-1 binding sites under hypoxia. RNA-seq identified 44 lncRNAs which are up-regulated under hypoxic condition in both cells. ChIP-seq analysis demonstrated that HIF-1 also binds to the lncRNAs under hypoxia. The expression of novel lncRNA, DARS-AS1 (aspartyl-tRNA synthetase anti-sense 1), is up-regulated only under hypoxia and HIF-1 binds to its promoter region, which includes two hypoxia-responsive elements. Its expression is also up-regulated with cobalt chloride exposure, while it is not under hypoxia when HIF-1 is knocked down by siRNA To clarify the biological roles of DARS-AS1, we measured the activity of caspase 3/7 using anti-sense oligo of DARS-AS1. Knockdown of DARS-AS1 deteriorated apoptotic cell death. In conclusion, we identified the novel lncRNAs regulated by HIF-1 under hypoxia and clarified that DARS-AS1 plays an important role in inhibiting apoptotic cell death in renal tubular cells.


Assuntos
Apoptose , Células Epiteliais/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , RNA Longo não Codificante/genética , Hipóxia Celular , Linhagem Celular , Epigênese Genética , Humanos , Túbulos Renais/citologia , Ligação Proteica , RNA Longo não Codificante/metabolismo , Elementos de Resposta , Regulação para Cima
16.
Nucleic Acids Res ; 45(8): 4344-4358, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28334937

RESUMO

Although studies of the differentiation from mouse embryonic stem (ES) cells to vascular endothelial cells (ECs) provide an excellent model for investigating the molecular mechanisms underlying vascular development, temporal dynamics of gene expression and chromatin modifications have not been well studied. Herein, using transcriptomic and epigenomic analyses based on H3K4me3 and H3K27me3 modifications at a genome-wide scale, we analysed the EC differentiation steps from ES cells and crucial epigenetic modifications unique to ECs. We determined that Gata2, Fli1, Sox7 and Sox18 are master regulators of EC that are induced following expression of the haemangioblast commitment pioneer factor, Etv2. These master regulator gene loci were repressed by H3K27me3 throughout the mesoderm period but rapidly transitioned to histone modification switching from H3K27me3 to H3K4me3 after treatment with vascular endothelial growth factor. SiRNA knockdown experiments indicated that these regulators are indispensable not only for proper EC differentiation but also for blocking the commitment to other closely aligned lineages. Collectively, our detailed epigenetic analysis may provide an advanced model for understanding temporal regulation of chromatin signatures and resulting gene expression profiles during EC commitment. These studies may inform the future development of methods to stimulate the vascular endothelium for regenerative medicine.


Assuntos
Células Endoteliais/metabolismo , Epigênese Genética , Fator de Transcrição GATA2/genética , Histonas/genética , Células-Tronco Embrionárias Murinas/metabolismo , Proteína Proto-Oncogênica c-ets-1/genética , Fatores de Transcrição SOXF/genética , Animais , Diferenciação Celular , Linhagem da Célula/genética , Células Endoteliais/citologia , Fator de Transcrição GATA2/antagonistas & inibidores , Fator de Transcrição GATA2/metabolismo , Histonas/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Cultura Primária de Células , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Proto-Oncogênica c-ets-1/antagonistas & inibidores , Proteína Proto-Oncogênica c-ets-1/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição SOXF/antagonistas & inibidores , Fatores de Transcrição SOXF/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Sci Rep ; 6: 20027, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26795421

RESUMO

The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation.


Assuntos
Células-Tronco Neurais/efeitos da radiação , Radiação , Diferenciação Celular/efeitos da radiação , Dano ao DNA , Relação Dose-Resposta à Radiação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos da radiação , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neuritos/efeitos da radiação , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação
18.
J Biol Chem ; 289(42): 29044-59, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25157100

RESUMO

VEGF is a key regulator of endothelial cell migration, proliferation, and inflammation, which leads to activation of several signaling cascades, including the calcineurin-nuclear factor of activated T cells (NFAT) pathway. NFAT is not only important for immune responses but also for cardiovascular development and the pathogenesis of Down syndrome. By using Down syndrome model mice and clinical patient samples, we showed recently that the VEGF-calcineurin-NFAT signaling axis regulates tumor angiogenesis and tumor metastasis. However, the connection between genome-wide views of NFAT-mediated gene regulation and downstream gene function in the endothelium has not been studied extensively. Here we performed comprehensive mapping of genome-wide NFATc1 binding in VEGF-stimulated primary cultured endothelial cells and elucidated the functional consequences of VEGF-NFATc1-mediated phenotypic changes. A comparison of the NFATc1 ChIP sequence profile and epigenetic histone marks revealed that predominant NFATc1-occupied peaks overlapped with promoter-associated histone marks. Moreover, we identified two novel NFATc1 regulated genes, CXCR7 and RND1. CXCR7 knockdown abrogated SDF-1- and VEGF-mediated cell migration and tube formation. siRNA treatment of RND1 impaired vascular barrier function, caused RhoA hyperactivation, and further stimulated VEGF-mediated vascular outgrowth from aortic rings. Taken together, these findings suggest that dynamic NFATc1 binding to target genes is critical for VEGF-mediated endothelial cell activation. CXCR7 and RND1 are NFATc1 target genes with multiple functions, including regulation of cell migration, tube formation, and barrier formation in endothelial cells.


Assuntos
Endotélio Vascular/metabolismo , Fatores de Transcrição NFATC/metabolismo , Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Células COS , Movimento Celular , Chlorocebus aethiops , Técnicas de Cocultura , Células Endoteliais/citologia , Epigênese Genética , Fibroblastos/metabolismo , Estudo de Associação Genômica Ampla , Células HEK293 , Homeostase , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Receptores CXCR4/metabolismo , Transdução de Sinais , Ativação Transcricional , Proteínas rho de Ligação ao GTP/metabolismo
19.
Genes Cells ; 18(11): 921-33, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23911012

RESUMO

Transcription factor GATA2 is highly expressed in hematopoietic stem cells and progenitors, whereas its expression declines after erythroid commitment of progenitors. In contrast, the start of GATA1 expression coincides with the erythroid commitment and increases along with the erythroid differentiation. We refer this dynamic transition of GATA factor expression to as the 'GATA factor switching'. Here, we examined contribution of the GATA factor switching to the erythroid differentiation. In Gata1-knockdown embryos that concomitantly express Gata2-GFP reporter, high-level expression of GFP reporter was detected in accumulated immature hematopoietic cells with impaired differentiation, demonstrating that GATA1 represses Gata2 gene expression in hematopoietic progenitors in vivo. We have conducted chromatin immunoprecipitation (ChIP) on microarray analyses of GATA2 and GATA1, and results indicate that the GATA1-binding sites widely overlap with the sites pre-occupied by GATA2 before the GATA1 expression. Importantly, erythroid genes harboring GATA boxes bound by both GATA1 and GATA2 tend to be expressed in immature erythroid cells, whereas those harboring GATA boxes to which GATA1 binds highly but GATA2 binds only weakly are important for the mature erythroid cell function. Our results thus support the contention that preceding binding of GATA2 helps the following binding of GATA1 and thereby secures smooth expression of the transient-phase genes.


Assuntos
Células Eritroides/citologia , Eritropoese/fisiologia , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA2/genética , Células-Tronco Hematopoéticas/citologia , Animais , Sítios de Ligação , Diferenciação Celular , Células Eritroides/metabolismo , Fator de Transcrição GATA1/metabolismo , Fator de Transcrição GATA2/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Transgênicos
20.
Cancer Res ; 73(10): 3019-28, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23492365

RESUMO

Antiangiogenic strategies can be effective for cancer therapy, but like all therapies resistance poses a major clinical challenge. Hypoxia and nutrient starvation select for aggressive qualities that may render tumors resistant to antiangiogenic attack. Here, we show that hypoxia and nutrient starvation cooperate to drive tumor aggressiveness through epigenetic regulation of the histone demethylase JMJD1A (JHDM2A; KDM3A). In cancer cells rendered resistant to long-term hypoxia and nutrient starvation, we documented a stimulation of AKT phosphorylation, cell morphologic changes, cell migration, invasion, and anchorage-independent growth in culture. These qualities associated in vivo with increased angiogenesis and infiltration of macrophages into tumor tissues. Through expression microarray analysis, we identified a cluster of functional drivers such as VEGFA, FGF18, and JMJD1A, the latter which was upregulated in vitro under conditions of hypoxia and nutrient starvation and in vivo before activation of the angiogenic switch or the prerefractory phase of antiangiogenic therapy. JMJD1A inhibition suppressed tumor growth by downregulating angiogenesis and macrophage infiltration, by suppressing expression of FGF2, HGF, and ANG2. Notably, JMJD1A inhibition enhanced the antitumor effects of the anti-VEGF compound bevacizumab and the VEGFR/KDR inhibitor sunitinib. Our results form the foundation of a strategy to attack hypoxia- and nutrient starvation-resistant cancer cells as an approach to leverage antiangiogenic treatments and limit resistance to them.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Hipóxia Celular , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Histona Desmetilases com o Domínio Jumonji/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica/etiologia , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA