Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Sci ; 115(7): 2346-2359, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710200

RESUMO

RNAs, such as noncoding RNA, microRNA, and recently mRNA, have been recognized as signal transduction molecules. CD271, also known as nerve growth factor receptor, has a critical role in cancer, although the precise mechanism is still unclear. Here, we show that CD271 mRNA, but not CD271 protein, facilitates spheroid cell proliferation. We established CD271-/- cells lacking both mRNA and protein of CD271, as well as CD271 protein knockout cells lacking only CD271 protein, from hypopharyngeal and oral squamous cell carcinoma lines. Sphere formation was reduced in CD271-/- cells but not in CD271 protein knockout cells. Mutated CD271 mRNA, which is not translated to a protein, promoted sphere formation. CD271 mRNA bound to hnRNPA2B1 protein at the 3'-UTR region, and the inhibition of this interaction reduced sphere formation. In surgical specimens, the CD271 mRNA/protein expression ratio was higher in the cancerous area than in the noncancerous area. These data suggest CD271 mRNA has dual functions, encompassing protein-coding and noncoding roles, with its noncoding RNA function being predominant in oral and head and neck squamous cell carcinoma.


Assuntos
Neoplasias de Cabeça e Pescoço , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B , Neoplasias Bucais , Proteínas do Tecido Nervoso , RNA Mensageiro , Receptores de Fator de Crescimento Neural , Carcinoma de Células Escamosas de Cabeça e Pescoço , Feminino , Humanos , Masculino , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo
2.
Cancer Sci ; 115(6): 1896-1909, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38480477

RESUMO

Cholangiocarcinoma (CCA) is one of the most difficult malignancies to treat as the therapeutic options are limited. Although several driver genes have been identified, most remain unknown. In this study, we identified a failed axon connection homolog (FAXC), whose function is unknown in mammals, by analyzing serially passaged CCA xenograft models. Knockdown of FAXC reduced subcutaneous tumorigenicity in mice. FAXC was bound to annexin A2 (ANXA2) and c-SRC, which are tumor-promoting genes. The FAXC/ANXA2/c-SRC complex forms in the mitochondria. FAXC enhances SRC-dependent ANXA2 phosphorylation at tyrosine-24, and the C-terminal amino acid residues (351-375) of FAXC are required for ANXA2 phosphorylation. Transcriptome data from a xenografted CCA cell line revealed that FAXC correlated with epithelial-mesenchymal transition, hypoxia, and KRAS signaling genes. Collectively, these findings advance our understanding of CCA tumorigenesis and provide candidate therapeutic targets.


Assuntos
Anexina A2 , Neoplasias dos Ductos Biliares , Carcinogênese , Colangiocarcinoma , Mitocôndrias , Quinases da Família src , Animais , Humanos , Masculino , Camundongos , Anexina A2/metabolismo , Anexina A2/genética , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Mitocôndrias/metabolismo , Fosforilação , Transdução de Sinais , Quinases da Família src/metabolismo , Quinases da Família src/genética
3.
Cell Death Dis ; 14(8): 556, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626065

RESUMO

Leucine zipper-like transcriptional regulator 1 (LZTR1), a substrate adaptor of Cullin 3 (CUL3)-based E3 ubiquitin ligase, regulates proteostasis of the RAS subfamily. Mutations in LZTR1 have been identified in patients with several types of cancer. However, the role of LZTR1 in tumor metastasis and the target molecules of LZTR1, excluding the RAS subfamily, are not clearly understood. Here, we show that LZTR1 deficiency increases tumor growth and metastasis. In lung adenocarcinoma cells, LZTR1 deficiency induced the accumulation of the RAS subfamily and enhanced cell proliferation, invasion, and xenograft tumor growth. Multi-omics analysis to clarify the pathways related to tumor progression showed that MAPK signaling, epithelial-mesenchymal transition (EMT), and extracellular matrix (ECM) remodeling-related gene ontology terms were enriched in LZTR1 knockout cells. Indeed, LZTR1 deficiency induced high expression of EMT markers under TGF-ß1 treatment. Our search for novel substrates that interact with LZTR1 resulted in the discovery of a Kelch-like protein 12 (KLHL12), which is involved in collagen secretion. LZTR1 could inhibit KLHL12-mediated ubiquitination of SEC31A, a component of coat protein complex II (COPII), whereas LZTR1 deficiency promoted collagen secretion. LZTR1-RIT1 and LZTR1-KLHL12 worked independently regarding molecular interactions and did not directly interfere with each other. Further, we found that LZTR1 deficiency significantly increases lung metastasis and promotes ECM deposition around metastatic tumors. Since collagen-rich extracellular matrix act as pathways for migration and facilitate metastasis, increased expression of RAS and collagen deposition may exert synergistic or additive effects leading to tumor progression and metastasis. In conclusion, LZTR1 deficiency exerts high metastatic potential by enhancing sensitivity to EMT induction and promoting collagen secretion. The functional inhibition of KLHL12 by LZTR1 provides important evidence that LZTR1 may be a repressor of BTB-Kelch family members. These results provide clues to the mechanism of LZTR1-deficiency carcinogenesis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Transição Epitelial-Mesenquimal/genética , Colágeno , Matriz Extracelular , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Proteínas Adaptadoras de Transdução de Sinal , Fatores de Transcrição
4.
Cancer Res ; 82(20): 3751-3762, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36166639

RESUMO

Distinguishing oncogenic mutations from variants of unknown significance (VUS) is critical for precision cancer medicine. Here, computational modeling of 71,756 RET variants for positive selection together with functional assays of 110 representative variants identified a three-dimensional cluster of VUSs carried by multiple human cancers that cause amino acid substitutions in the calmodulin-like motif (CaLM) of RET. Molecular dynamics simulations indicated that CaLM mutations decrease interactions between Ca2+ and its surrounding residues and induce conformational distortion of the RET cysteine-rich domain containing the CaLM. RET-CaLM mutations caused ligand-independent constitutive activation of RET kinase by homodimerization mediated by illegitimate disulfide bond formation. RET-CaLM mutants possessed oncogenic and tumorigenic activities that could be suppressed by tyrosine kinase inhibitors targeting RET. This study identifies calcium-binding ablating mutations as a novel type of oncogenic mutation of RET and indicates that in silico-driven annotation of VUSs of druggable oncogenes is a promising strategy to identify targetable driver mutations. SIGNIFICANCE: Comprehensive proteogenomic and in silico analyses of a vast number of VUSs identify a novel set of oncogenic and druggable mutations in the well-characterized RET oncogene.


Assuntos
Proteínas de Drosophila , Neoplasia Endócrina Múltipla Tipo 2a , Neoplasias , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Carcinogênese/genética , Cisteína/genética , Cisteína/metabolismo , Dissulfetos/metabolismo , Proteínas de Drosophila/genética , Humanos , Ligantes , Neoplasia Endócrina Múltipla Tipo 2a/genética , Neoplasia Endócrina Múltipla Tipo 2a/metabolismo , Mutação , Neoplasias/genética , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-ret/genética
5.
Oncogene ; 41(19): 2706-2718, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35393543

RESUMO

DNA double-strand break (DSB) repair-pathway choice regulated by 53BP1 and BRCA1 contributes to genome stability. 53BP1 cooperates with the REV7-Shieldin complex and inhibits DNA end resection to block homologous recombination (HR) and affects the sensitivity to inhibitors for poly (ADP-ribose) polymerases (PARPs) in BRCA1-deficient cells. Here, we show that a REV7 binding protein, CHAMP1 (chromosome alignment-maintaining phosphoprotein 1), has an opposite function of REV7 in DSB repair and promotes HR through DNA end resection together with POGZ (POGO transposable element with ZNF domain). CHAMP1 was recruited to laser-micro-irradiation-induced DSB sites and promotes HR, but not NHEJ. CHAMP1 depletion suppressed the recruitment of BRCA1, but not the recruitment of 53BP1, suggesting that CHAMP1 regulates DSB repair pathway in favor of HR. Depletion of either CHAMP1 or POGZ impaired the recruitment of phosphorylated RPA2 and CtIP (CtBP-interacting protein) at DSB sites, implying that CHAMP1, in complex with POGZ, promotes DNA end resection for HR. Furthermore, loss of CHAMP1 and POGZ restored the sensitivity to a PARP inhibitor in cells depleted of 53BP1 together with BRCA1. These data suggest that CHAMP1and POGZ counteract the inhibitory effect of 53BP1 on HR by promoting DNA end resection and affect the resistance to PARP inhibitors.


Assuntos
Quebras de DNA de Cadeia Dupla , Inibidores de Poli(ADP-Ribose) Polimerases , Proteína BRCA1/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Recombinação Homóloga , Humanos , Fosfoproteínas/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Transposases/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
6.
Sci Rep ; 10(1): 21592, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33299012

RESUMO

Cancer stem cells (CSCs) define a subpopulation of cancer cells that are resistant to therapy. However, little is known of how CSC characteristics are regulated. We previously showed that dormant cancer stem cells are enriched with a CD274low fraction of cholangiocarcinoma cells. Here we found that BEX2 was highly expressed in CD274low cells, and that BEX2 knockdown decreased the tumorigenicity and G0 phase of cholangiocarcinoma cells. BEX2 was found to be expressed predominantly in G0 phase and starvation induced the USF2 transcriptional factor, which induced BEX2 transcription. Comprehensive screening of BEX2 binding proteins identified E3 ubiquitin ligase complex proteins, FEM1B and CUL2, and a mitochondrial protein TUFM, and further demonstrated that knockdown of BEX2 or TUFM increased mitochondria-related oxygen consumption and decreased tumorigenicity in cholangiocarcinoma cells. These results suggest that BEX2 is essential for maintaining dormant cancer stem cells through the suppression of mitochondrial activity in cholangiocarcinoma.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Regulação Neoplásica da Expressão Gênica , Mitocôndrias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Proteínas Culina/genética , Proteínas Culina/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas do Tecido Nervoso/genética , Consumo de Oxigênio/fisiologia
7.
Mol Neurobiol ; 57(12): 4891-4910, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32812201

RESUMO

Fatty acid binding protein 7 (FABP7) is an intracellular fatty acid chaperon that is highly expressed in astrocytes, oligodendrocyte-precursor cells, and malignant glioma. Previously, we reported that FABP7 regulates the response to extracellular stimuli by controlling the expression of caveolin-1, an important component of lipid raft. Here, we explored the detailed mechanisms underlying FABP7 regulation of caveolin-1 expression using primary cultured FABP7-KO astrocytes as a model of loss of function and NIH-3T3 cells as a model of gain of function. We discovered that FABP7 interacts with ATP-citrate lyase (ACLY) and is important for acetyl-CoA metabolism in the nucleus. This interaction leads to epigenetic regulation of several genes, including caveolin-1. Our novel findings suggest that FABP7-ACLY modulation of nuclear acetyl-CoA has more influence on histone acetylation than cytoplasmic acetyl-CoA. The changes to histone structure may modify caveolae-related cell activity in astrocytes and tumors, including malignant glioma.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Acetilcoenzima A/metabolismo , Astrócitos/metabolismo , Núcleo Celular/metabolismo , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Acetilação , Animais , Sequência de Bases , Caveolina 1/genética , Caveolina 1/metabolismo , Células HEK293 , Histonas/metabolismo , Humanos , Lisina/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Células NIH 3T3 , Regiões Promotoras Genéticas/genética , Ligação Proteica
8.
J Radiat Res ; 61(1): 1-13, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31845986

RESUMO

Human oxidation resistance 1 (OXR1) was identified as a protein that decreases genomic mutations in Escherichia coli caused by oxidative DNA damage. However, the mechanism by which OXR1 defends against genome instability has not been elucidated. To clarify how OXR1 maintains genome stability, the effects of OXR1-depletion on genome stability were investigated in OXR1-depleted HeLa cells using gamma-rays (γ-rays). The OXR1-depleted cells had higher levels of superoxide and micronucleus (MN) formation than control cells after irradiation. OXR1-overexpression alleviated the increases in reactive oxygen species (ROS) level and MN formation after irradiation. The increased MN formation in irradiated OXR1-depleted cells was partially attenuated by the ROS inhibitor N-acetyl-L-cysteine, suggesting that OXR1-depeletion increases ROS-dependent genome instability. We also found that OXR1-depletion shortened the duration of γ-ray-induced G2/M arrest. In the presence of the cell cycle checkpoint inhibitor caffeine, the level of MN formed after irradiation was similar between control and OXR1-depleted cells, demonstrating that OXR1-depletion accelerates MN formation through abrogation of G2/M arrest. In OXR1-depleted cells, the level of cyclin D1 protein expression was increased. Here we report that OXR1 prevents genome instability by cell cycle regulation as well as oxidative stress defense.


Assuntos
Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Raios gama , Instabilidade Genômica/efeitos da radiação , Proteínas Mitocondriais/metabolismo , Mitose/efeitos da radiação , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Células HeLa , Humanos , Peróxido de Hidrogênio/toxicidade , Micronúcleo Germinativo/efeitos dos fármacos , Micronúcleo Germinativo/metabolismo , Micronúcleo Germinativo/efeitos da radiação , Proteínas Mitocondriais/deficiência , Mitose/efeitos dos fármacos , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Superóxidos/metabolismo
9.
Cell Death Differ ; 27(3): 1023-1035, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31337872

RESUMO

Leucine zipper-like transcriptional regulator 1 (LZTR1) encodes a member of the BTB-Kelch superfamily, which interacts with the Cullin3 (CUL3)-based E3 ubiquitin ligase complex. Mutations in LZTR1 have been identified in glioblastoma, schwannomatosis, and Noonan syndrome. However, the functional role of LZTR1 in carcinogenesis or human development is not fully understood. Here, we demonstrate that LZTR1 facilitates the polyubiquitination and degradation of RAS via the ubiquitin-proteasome pathway, leading to the inhibition of the RAS/MAPK signaling. The polyubiquitination and degradation of RAS was also observed in cells expressing MRAS, HRAS, NRAS, and KRAS as well as oncogenic RAS mutants and inhibited the activation of ERK1/2 and cell growth. In vivo ubiquitination assays showed that MRAS-K127 and HRAS-K170 were ubiquitinated by LZTR1 and that the polyubiquitinated-chains contained mainly Ub-K48, K63, and K33-linked chains, suggesting its possible involvement in autophagy. Immunoprecipitation analyses showed the interaction of LZTR1 and RAS-GTPases with autophagy-related proteins, including LC3B and SQSTM1/p62. Co-expression of LZTR1 and RAS increased the expression of lipidated form of LC3B. However, long-term treatment with chloroquine had little effect on RAS protein levels, suggesting that the contribution of autophagy to LZTR1-mediated RAS degradation is minimal. Taken together, these results show that LZTR1 functions as a "RAS killer protein" mainly via the ubiquitin-proteasome pathway regardless of the type of RAS GTPase, controlling downstream signal transduction. Our results also suggest a possible association of LZTR1 and RAS-GTPases with the autophagy. These findings provide clues for the elucidation of the mechanisms of RAS degradation and regulation of the RAS/MAPK signaling cascade.


Assuntos
Poliubiquitina/metabolismo , Proteólise , Fatores de Transcrição/metabolismo , Ubiquitinação , Proteínas ras/metabolismo , Autofagia , Sequência de Bases , Proteínas Culina/metabolismo , Células HEK293 , Humanos , Lisina/metabolismo , Modelos Biológicos , Multimerização Proteica
10.
J Diabetes Res ; 2019: 7234549, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31179341

RESUMO

Our earlier studies demonstrated that cysteine414- (zinc-binding site of mCRY1-) alanine mutant mCRY1 transgenic mice (Tg mice) exhibit diabetes characterized by the reduction of ß-cell proliferation and by ß-cell dysfunction, presumably caused by senescence-associated secretory phenotype- (SASP-) like characters of islets. Earlier studies also showed that atypical duct-like structures in the pancreas developed age-dependently in Tg mice. Numerous reports have described that karyopherin alpha 2 (KPNA2) is highly expressed in cancers of different kinds. However, details of the expression of KPNA2 in pancreatic ductal atypia and in normal pancreatic tissues remain unclear. To assess the feature of the expression of KPNA2 in the development of the ductal atypia and islet architectures, we scrutinized the pancreas of Tg mice histopathologically. Results showed that considerable expression of KPNA2 was observed in pancreatic ß-cells, suggesting its importance in maintaining the functions of ß-cells. In mature stages, the level of KPNA2 expression was lower in islets of Tg mice than in wild-type controls. At 4 weeks, the expression levels of KPNA2 in islets of Tg mice were the same as those in wild-type controls. These results suggest that the reduction of KPNA2 might contribute to ß-cell dysfunction in mature Tg mice. Additionally, the formation of mucin-producing intra-islet ducts, islet fibrosis, and massive T cell recruitment to the islet occurred in aged Tg mice. In exocrine areas, primary pancreatic intraepithelial neoplasias (PanINs) with mucinous pancreatic duct glands (PDGs) emerged in aged Tg mice. High expression of KPNA2 was observed in the ductal atypia. By contrast, KPNA2 expression in normal ducts was quite low. Thus, upregulation of KPNA2 seemed to be correlated with progression of the degree of atypia in pancreatic ductal cells. The SASP-like microenvironment inside islets might play stimulatory roles in the formation of ductal metaplasia inside islets and in islet fibrosis in Tg mice.


Assuntos
Criptocromos/genética , Diabetes Mellitus Experimental/genética , Ilhotas Pancreáticas/metabolismo , Ductos Pancreáticos/metabolismo , alfa Carioferinas/metabolismo , Envelhecimento , Animais , Fibrose , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Pâncreas/metabolismo , Fenótipo , Regulação para Cima , alfa Carioferinas/genética
11.
Oncogene ; 38(16): 3077-3092, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30617304

RESUMO

Breast cancer gene 1 (BRCA1) is a tumor suppressor that is associated with hereditary breast and ovarian cancer. BRCA1 functions in DNA repair and centrosome regulation together with BRCA1-associated RING domain protein (BARD1), a heterodimer partner of BRCA1. Obg-like ATPase 1 (OLA1) was identified as a protein that interacts with BARD1. OLA1 regulates the centrosome by binding to and collaborating with BRCA1 and BARD1. We identified receptor for activated C kinase (RACK1) as a protein that interacts with OLA1. RACK1 directly bound to OLA1, the N-terminal region of BRCA1, and γ-tubulin, associated with BARD1, and localized the centrosomes throughout the cell cycle. Knockdown of RACK1 caused abnormal centrosomal localization of BRCA1 and abrogated centriole duplication. Overexpression of RACK1 increased the centrosomal localization of BRCA1 and caused centrosome amplification due to centriole overduplication. The number of centrioles in cells with two γ-tubulin spots was higher in cell lines derived from mammary tissue compared to those derived from other tissues. The effects of aberrant RACK1 expression level on centriole duplication were observed in cell lines derived from mammary tissue, but not in those derived from other tissues. Two BRCA1 variants, R133H and E143K, and a RACK1 variant, K280E, associated with cancer, which weakened the BRCA1-RACK1 interaction, interfered with the centrosomal localization of BRCA1 and reduced centrosome amplification induced by overexpression of RACK1. These results suggest that RACK1 regulates centriole duplication by controlling the centrosomal localization of BRCA1 in mammary tissue-derived cells and that this is dependent on the BRCA1-RACK1 interaction.


Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Centríolos/genética , Proteínas de Neoplasias/genética , Receptores de Quinase C Ativada/genética , Adenosina Trifosfatases/genética , Mama/patologia , Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Tubulina (Proteína)/genética
12.
Hum Genet ; 138(1): 21-35, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30368668

RESUMO

RASopathies are a group of developmental disorders caused by mutations in genes that regulate the RAS/MAPK pathway and include Noonan syndrome (NS), Costello syndrome, cardiofaciocutaneous syndrome and other related disorders. Whole exome sequencing studies recently identified LZTR1, PPP1CB and MRAS as new causative genes in RASopathies. However, information on the phenotypes of LZTR1 mutation-positive patients and functional properties of the mutations are limited. To identify variants of LZTR1, PPP1CB, and MRAS, we performed a targeted next-generation sequencing and reexamined previously analyzed exome data in 166 patients with suspected RASopathies. We identified eight LZTR1 variants, including a de novo variant, in seven probands who were suspicious for NS and one known de novo PPP1CB variant in a patient with NS. One of the seven probands had two compound heterozygous LZTR1 variants, suggesting autosomal recessive inheritance. All probands with LZTR1 variants had cardiac defects, including hypertrophic cardiomyopathy and atrial septal defect. Five of the seven probands had short stature or intellectual disabilities. Immunoprecipitation of endogenous LZTR1 followed by western blotting showed that LZTR1 bound to the RAF1-PPP1CB complex. Cells transfected with a small interfering RNA against LZTR1 exhibited decreased levels of RAF1 phosphorylated at Ser259. These are the first results to demonstrate LZTR1 in association with the RAF1-PPP1CB complex as a component of the RAS/MAPK pathway.


Assuntos
Biomarcadores/análise , Mutação , Síndrome de Noonan/genética , Proteína Fosfatase 1/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Fatores de Transcrição/metabolismo , Adolescente , Adulto , Criança , Pré-Escolar , Exoma , Feminino , Seguimentos , Humanos , Masculino , Síndrome de Noonan/metabolismo , Síndrome de Noonan/patologia , Fenótipo , Prognóstico , Ligação Proteica , Proteína Fosfatase 1/genética , Proteínas Proto-Oncogênicas c-raf/genética , Fatores de Transcrição/genética , Adulto Jovem
13.
Philos Trans R Soc Lond B Biol Sci ; 372(1731)2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28847829

RESUMO

Nucleosome remodelling (NR) regulates transcription in an ATP-dependent manner, and influences gene expression required for development and cellular functions, including those involved in anti-cancer and anti-ageing processes. ATP-utilizing chromatin assembly and remodelling factor (ACF) and Brahma-associated factor (BAF) complexes, belonging to the ISWI and SWI/SNF families, respectively, are involved in various types of DNA repair. Suppression of several BAF factors makes U2OS cells significantly sensitive to X-rays, UV and especially to cisplatin, and these BAF factors contribute to the accumulation of repair proteins at various types of DNA damage and to DNA repair. Recent cancer genome sequencing and expression analysis has shown that BAF factors are frequently mutated or, more frequently, silenced in various types of cancer cells. Thus, those cancer cells are potentially X-ray- and especially cisplatin-sensitive, suggesting a way of optimizing current cancer therapy. Recent single-stem cell analysis suggests that mutations and epigenetic changes influence stem cell functionality leading to cellular ageing. Genetic and epigenetic changes in the BAF factors diminish DNA repair as well as transcriptional regulation activities, and DNA repair defects in turn negatively influence NR and transcriptional regulation. Thus, they build negative feedback loops, which accelerate both cellular senescence and transformation as common and rare cellular events, respectively, causing cellular ageing.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.


Assuntos
Senescência Celular , Montagem e Desmontagem da Cromatina , Epigênese Genética , Regulação da Expressão Gênica , Neoplasias/genética , Nucleossomos/genética , Reparo do DNA , Humanos , Nucleossomos/metabolismo
14.
EBioMedicine ; 20: 27-38, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28579242

RESUMO

Mitochondrial dysfunction increases oxidative stress and depletes ATP in a variety of disorders. Several antioxidant therapies and drugs affecting mitochondrial biogenesis are undergoing investigation, although not all of them have demonstrated favorable effects in the clinic. We recently reported a therapeutic mitochondrial drug mitochonic acid MA-5 (Tohoku J. Exp. Med., 2015). MA-5 increased ATP, rescued mitochondrial disease fibroblasts and prolonged the life span of the disease model "Mitomouse" (JASN, 2016). To investigate the potential of MA-5 on various mitochondrial diseases, we collected 25 cases of fibroblasts from various genetic mutations and cell protective effect of MA-5 and the ATP producing mechanism was examined. 24 out of the 25 patient fibroblasts (96%) were responded to MA-5. Under oxidative stress condition, the GDF-15 was increased and this increase was significantly abrogated by MA-5. The serum GDF-15 elevated in Mitomouse was likewise reduced by MA-5. MA-5 facilitates mitochondrial ATP production and reduces ROS independent of ETC by facilitating ATP synthase oligomerization and supercomplex formation with mitofilin/Mic60. MA-5 reduced mitochondria fragmentation, restores crista shape and dynamics. MA-5 has potential as a drug for the treatment of various mitochondrial diseases. The diagnostic use of GDF-15 will be also useful in a forthcoming MA-5 clinical trial.


Assuntos
Ácidos Indolacéticos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fenilbutiratos/farmacologia , Multimerização Proteica/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Biomarcadores , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA Mitocondrial , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/metabolismo , Fibroblastos/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Dinâmica Mitocondrial/efeitos dos fármacos , ATPases Mitocondriais Próton-Translocadoras/química , Complexos Multiproteicos/metabolismo , Mutação , Biogênese de Organelas , Prognóstico , Substâncias Protetoras , Ligação Proteica
15.
Biochem Biophys Res Commun ; 454(3): 471-7, 2014 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-25451266

RESUMO

Slingshot-1 (SSH1) is a protein phosphatase that dephosphorylates and activates cofilin, an actin-severing and -disassembling protein. SSH1 is bound to and activated by F-actin, but not G-actin. SSH1 is accumulated in the F-actin-rich lamellipodium but is also diffusely distributed in the cytoplasm. It remains unknown whether SSH1 is activated by soluble (low-level polymerized) actin filaments in the cytoplasm. In this study, we show that SSH1 binds to gelsolin via actin filaments in the cytosolic fraction. Gelsolin promoted solubilization of actin filaments and SSH1 in cell-free assays and in cultured cells. SSH1 was activated by gelsolin-generated soluble actin filaments. Furthermore, gelsolin enhanced cofilin dephosphorylation in neuregulin-stimulated cells. Our results suggest that cytosolic SSH1 forms a complex with gelsolin via soluble actin filaments and is activated by gelsolin-generated soluble actin filaments and that gelsolin promotes stimulus-induced cofilin dephosphorylation through increasing soluble actin filaments, which support SSH1 activation in the cytoplasm.


Assuntos
Citoesqueleto de Actina/metabolismo , Citosol/metabolismo , Gelsolina/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Ativação Enzimática , Gelsolina/análise , Humanos , Células MCF-7 , Fosfoproteínas Fosfatases/análise , Fosforilação , Ligação Proteica , Mapas de Interação de Proteínas , Solubilidade
16.
J Biol Chem ; 289(38): 26302-26313, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25100728

RESUMO

Cofilin plays an essential role in cell migration and morphogenesis by enhancing actin filament dynamics via its actin filament-severing activity. Slingshot-1 (SSH1) is a protein phosphatase that plays a crucial role in regulating actin dynamics by dephosphorylating and reactivating cofilin. In this study, we identified insulin receptor substrate (IRS)-4 as a novel SSH1-binding protein. Co-precipitation assays revealed the direct endogenous binding of IRS4 to SSH1. IRS4, but not IRS1 or IRS2, was bound to SSH1. IRS4 was bound to SSH1 mainly through the unique region (amino acids 335-400) adjacent to the C terminus of the phosphotyrosine-binding domain of IRS4. The N-terminal A, B, and phosphatase domains of SSH1 were bound to IRS4 independently. Whereas in vitro phosphatase assays revealed that IRS4 does not directly affect the cofilin phosphatase activity of SSH1, knockdown of IRS4 increased cofilin phosphorylation in cultured cells. Knockdown of IRS4 decreased phosphatidylinositol 3-kinase (PI3K) activity, and treatment with an inhibitor of PI3K increased cofilin phosphorylation. Akt preferentially phosphorylated SSH1 at Thr-826, but expression of a non-phosphorylatable T826A mutant of SSH1 did not affect insulin-induced cofilin dephosphorylation, and an inhibitor of Akt did not increase cofilin phosphorylation. These results suggest that IRS4 promotes cofilin dephosphorylation through sequential activation of PI3K and SSH1 but not through Akt. In addition, IRS4 co-localized with SSH1 in F-actin-rich membrane protrusions in insulin-stimulated cells, which suggests that the association of IRS4 with SSH1 contributes to localized activation of cofilin in membrane protrusions.


Assuntos
Cofilina 1/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Processamento de Proteína Pós-Traducional , Extensões da Superfície Celular/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Insulina/fisiologia , Proteínas Substratos do Receptor de Insulina/química , Proteínas Substratos do Receptor de Insulina/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas Fosfatases/química , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
17.
Cancer Res ; 74(9): 2465-75, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24788099

RESUMO

The SWI/SNF chromatin-remodeling family contains various protein complexes, which regulate gene expression during cellular development and influence DNA damage response in an ATP- and complex-dependent manner, of which details remain elusive. Recent human genome sequencing of various cancer cells revealed frequent mutations in SWI/SNF factors, especially ARID1A, a variant subunit in the BRG1-associated factor (BAF) complex of the SWI/SNF family. We combined live-cell analysis and gene-suppression experiments to show that suppression of either ARID1A or its paralog ARID1B led to reduced nonhomologous end joining activity of DNA double-strand breaks (DSB), decreased accumulation of KU70/KU80 proteins at DSB, and sensitivity to ionizing radiation, as well as to cisplatin and UV. Thus, in contrast to transcriptional regulation, both ARID1 proteins are required for cellular resistance to various types of DNA damage, including DSB. The suppression of other SWI/SNF factors, namely SNF5, BAF60a, BAF60c, BAF155, or BAF170, exhibits a similar phenotype. Of these factors, ARID1A, ARID1B, SNF5, and BAF60c are necessary for the immediate recruitment of the ATPase subunit of the SWI/SNF complex to DSB, arguing that both ARID1 proteins facilitate the damage response of the complex. Finally, we found interdependent protein stability among the SWI/SNF factors, suggesting their direct interaction within the complex and the reason why multiple factors are frequently lost in parallel in cancer cells. Taken together, we show that cancer cells lacking in the expression of certain SWI/SNF factors, including ARID1A, are deficient in DNA repair and potentially vulnerable to DNA damage.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/fisiologia , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , Estabilidade Proteica , Subunidades Proteicas/metabolismo , Tolerância a Radiação , Fatores de Transcrição/metabolismo
18.
Mol Cell ; 53(1): 101-14, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24289923

RESUMO

The breast and ovarian cancer-specific tumor suppressor BRCA1, along with its heterodimer partner BRCA1-associated RING domain protein (BARD1), plays important roles in DNA repair, centrosome regulation, and transcription. To explore further functions of BRCA1/BARD1, we performed mass spectrometry analysis and identified Obg-like ATPase 1 (OLA1) as a protein that interacts with the carboxy-terminal region of BARD1. OLA1 directly bound to the amino-terminal region of BRCA1 and γ-tubulin. OLA1 localized to centrosomes in interphase and to the spindle pole in mitotic phase, and its knockdown resulted in centrosome amplification and the activation of microtubule aster formation. OLA1 with a mutation observed in breast cancer cell line, E168Q, failed to bind BRCA1 and rescue the OLA1 knockdown-induced centrosome amplification. BRCA1 variant I42V also abrogated the binding of BRCA1 to OLA1. These findings suggest that OLA1 plays an important role in centrosome regulation together with BRCA1.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteína BRCA1/metabolismo , Neoplasias da Mama/metabolismo , Centrossomo/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Adenosina Trifosfatases/genética , Substituição de Aminoácidos , Proteína BRCA1/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Proteínas de Ligação ao GTP/genética , Técnicas de Silenciamento de Genes , Humanos , Mutação de Sentido Incorreto , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
19.
Genetics ; 196(2): 443-53, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24336747

RESUMO

The essential zinc finger protein ASCIZ (also known as ATMIN, ZNF822) plays critical roles during lung organogenesis and B cell development in mice, where it regulates the expression of dynein light chain (DYNLL1/LC8), but its functions in other species including invertebrates are largely unknown. Here we report the identification of the Drosophila ortholog of ASCIZ (dASCIZ) and show that loss of dASCIZ function leads to pronounced mitotic delays with centrosome and spindle positioning defects during development, reminiscent of impaired dynein motor functions. Interestingly, similar mitotic and developmental defects were observed upon knockdown of the DYNLL/LC8-type dynein light chain Cutup (Ctp), and dASCIZ loss-of-function phenotypes could be suppressed by ectopic Ctp expression. Consistent with a genetic function of dASCIZ upstream of Ctp, we show that loss of dASCIZ led to reduced endogenous Ctp mRNA and protein levels and dramatically reduced Ctp-LacZ reporter gene activity in vivo, indicating that dASCIZ regulates development and mitosis as a Ctp transcription factor. We speculate that the more severe mitotic defects in the absence of ASCIZ in flies compared to mice may be due to redundancy with a second, ASCIZ-independent, Dynll2 gene in mammals in contrast to a single Ctp gene in Drosophila. Altogether, our data demonstrate that ASCIZ is an evolutionary highly conserved transcriptional regulator of dynein light-chain levels and a novel regulator of mitosis in flies.


Assuntos
Drosophila/genética , Drosophila/metabolismo , Dineínas/genética , Regulação da Expressão Gênica , Mitose , Dedos de Zinco/fisiologia , Animais , Apoptose/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dineínas/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Larva/genética , Larva/metabolismo , Masculino , Organogênese/genética , Fenótipo , Interferência de RNA , Fuso Acromático/genética , Fuso Acromático/metabolismo , Asas de Animais/crescimento & desenvolvimento
20.
Cancer Sci ; 104(7): 871-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23551833

RESUMO

Most cancer cells are aneuploid, which could be caused by defects in chromosome segregation machinery. Nucleoporins (Nup) are components of the nuclear pore complex, which is essential for nuclear transport during interphase, but several nucleoporins are also known to be involved in chromosome segregation. Here we report a novel function of Nup188, one of the nucleoporins regulating chromosome segregation. Nup188 localizes to spindle poles during mitosis, through the C-terminal region of Nup188. In Nup188-depleted mitotic cells, chromosomes fail to align to the metaphase plate, which causes mitotic arrest due to the spindle assembly checkpoint. Both the middle and the C-terminal regions were required for chromosome alignment. Robust K-fibers, microtubule bundles attaching to kinetochores, were hardly formed in Nup188-depleted cells. Significantly, we found that Nup188 interacts with NuMA, which plays an instrumental role in focusing microtubules at centrosomes, and NuMA localization to spindle poles is perturbed in Nup188-depleted cells. These data suggest that Nup188 promotes chromosome alignment through K-fiber formation and recruitment of NuMA to spindle poles.


Assuntos
Proteínas de Ciclo Celular/genética , Segregação de Cromossomos , Mitose/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Centrossomo/metabolismo , Células HeLa , Humanos , Cinetocoros/metabolismo , Metáfase/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA