Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(9): e0232729, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32915786

RESUMO

Zinc ions (Zn2+) are important messenger molecules involved in various physiological functions. To maintain the homeostasis of cytosolic Zn2+ concentration ([Zn2+]c), Zrt/Irt-related proteins (ZIPs) and Zn2+ transporters (ZnTs) are the two families of proteins responsible for decreasing and increasing the [Zn2+]c, respectively, by fluxing Zn2+ across the membranes of the cell and intracellular compartments in opposite directions. Most studies focus on the cytotoxicity incurred by a high concentration of [Zn2+]c and less investigate the [Zn2+]c at physiological levels. Zinc oxide-nanoparticle (ZnO-NP) is blood brain barrier-permeable and elevates the [Zn2+]c to different levels according to the concentrations of ZnO-NP applied. In this study, we mildly elevated the [Zn2+]c by ZnO-NP at concentrations below 1 µg/ml, which had little cytotoxicity, in cultured human neuroblastoma SH-SY5Y cells and characterized the importance of Zn2+ transporters in 6-hydroxy dopamine (6-OHDA)-induced cell death. The results show that ZnO-NP at low concentrations elevated the [Zn2+]c transiently in 6 hr, then declined gradually to a basal level in 24 hr. Knocking down the expression levels of ZnT1 (located mostly at the plasma membrane) and ZIP8 (present in endosomes and lysosomes) increased and decreased the ZnO-NP-induced elevation of [Zn2+]c, respectively. ZnO-NP treatment reduced the basal levels of reactive oxygen species and Bax/Bcl-2 mRNA ratios; in addition, ZnO-NP decreased the 6-OHDA-induced ROS production, p53 expression, and cell death. These results show that ZnO-NP-induced mild elevation in [Zn2+]c activates beneficial effects in reducing the 6-OHDA-induced cytotoxic effects. Therefore, brain-delivery of ZnO-NP can be regarded as a potential therapy for neurodegenerative diseases.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Nanopartículas Metálicas , Óxido de Zinco/farmacologia , Zinco/metabolismo , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Expressão Gênica/efeitos dos fármacos , Humanos , Oxidopamina/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Mol Neurobiol ; 56(9): 6095-6105, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30721447

RESUMO

Mutations in RAB18, a member of small G protein, cause Warburg micro syndrome (WARBM), whose clinical features include vision impairment, postnatal microcephaly, and lower limb spasticity. Previously, our Rab18-/- mice exhibited hind limb weakness and spasticity as well as signs of axonal degeneration in the spinal cord and lumbar spinal nerves. However, the cellular and molecular function of RAB18 and its roles in the pathogenesis of WARBM are still not fully understood. Using immunofluorescence staining and expression of Rab18 and organelle markers, we find that Rab18 associates with lysosomes and actively traffics along neurites in cultured neurons. Interestingly, Rab18-/- neurons exhibit impaired lysosomal transport. Using autophagosome marker LC3-II, we show that Rab18 dysfunction leads to aberrant autophagy activities in neurons. Electron microscopy further reveals accumulation of lipofuscin-like granules in the dorsal root ganglion of Rab18-/- mice. Surprisingly, Rab18 colocalizes, cofractionates, and coprecipitates with the lysosomal regulator Rab7, mutations of which cause Charcot-Marie-Tooth (CMT) neuropathy type 2B. Moreover, Rab7 is upregulated in Rab18-deficient neurons, suggesting a compensatory effect. Together, our results suggest that the functions of RAB18 and RAB7 in lysosomal and autophagic activities may constitute an overlapping mechanism underlying WARBM and CMT pathogenesis in the nervous system.


Assuntos
Anormalidades Múltiplas/metabolismo , Autofagia , Catarata/congênito , Doença de Charcot-Marie-Tooth/metabolismo , Córnea/anormalidades , Hipogonadismo/metabolismo , Deficiência Intelectual/metabolismo , Lisossomos/metabolismo , Microcefalia/metabolismo , Sistema Nervoso/metabolismo , Atrofia Óptica/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Catarata/metabolismo , Córnea/metabolismo , Epistasia Genética , Células HEK293 , Humanos , Laminopatias , Camundongos , Neurônios/metabolismo , Células PC12 , Ligação Proteica , Ratos , Ratos Sprague-Dawley
3.
J Cell Sci ; 131(23)2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30404828

RESUMO

α-Synuclein is associated with Parkinson's disease, and is mainly localized in presynaptic terminals and regulates exocytosis, but its physiological roles remain controversial. Here, we studied the effects of soluble and aggregated α-synuclein on exocytosis, and explored the molecular mechanism by which α-synuclein interacts with regulatory proteins, including Rab3A, Munc13-1 (also known as Unc13a) and Munc18-1 (also known as STXBP1), in order to regulate exocytosis. Through fluorescence recovery after photobleaching experiments, overexpressed α-synuclein in PC12 cells was found to be in a monomeric form, which promotes exocytosis. In contrast, aggregated α-synuclein induced by lactacystin treatment inhibits exocytosis. Our results show that α-synuclein is involved in vesicle priming and fusion. α-Synuclein and phorbol 12-myristate 13-acetate (PMA), which is known to enhance vesicle priming mediated by Rab3A, Munc13-1 and Munc18-1, act on the same population of vesicles, but regulate priming independently. Furthermore, the results show a novel effects of α-synuclein on mobilizing Ca2+ release from thapsigargin-sensitive Ca2+ pools to enhance the ATP-induced [Ca2+]i increase, which enhances vesicle fusion. Our results provide a detailed understanding of the action of α-synuclein during the final steps of exocytosis.


Assuntos
Cálcio/metabolismo , Exocitose/fisiologia , Tapsigargina/farmacologia , alfa-Sinucleína/metabolismo , Animais , Fusão de Membrana/fisiologia , Células PC12 , Ratos , Tapsigargina/metabolismo , Transfecção , Proteína rab3A de Ligação ao GTP/genética , Proteína rab3A de Ligação ao GTP/metabolismo
4.
Cephalalgia ; 38(3): 466-475, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28952330

RESUMO

Background Susceptibility genes for migraine, despite it being a highly prevalent and disabling neurological disorder, have not been analyzed in Asians by genome-wide association study (GWAS). Methods We conducted a two-stage case-control GWAS to identify susceptibility genes for migraine without aura in Han Chinese residing in Taiwan. In the discovery stage, we genotyped 1005 clinic-based Taiwanese migraine patients and 1053 population-based sex-matched controls using Axiom Genome-Wide CHB Array. In the replication stage, we genotyped 27 single-nucleotide polymorphisms with p < 10-4 in 1120 clinic-based migraine patients and 604 sex-matched normal controls by using Sequenom. Variants at LRP1, TRPM8, and PRDM, which have been replicated in Caucasians, were also genotyped. Results We identified a novel susceptibility locus (rs655484 in DLG2) that reached GWAS significance level for migraine risk in Han Chinese ( p = 1.45 × 10-12, odds ratio [OR] = 2.42), and also another locus (rs3781545in GFRA1) with suggestive significance ( p = 1.27 × 10-7, OR = 1.38). In addition, we observed positive association signals with a similar trend to the associations identified in Caucasian GWASs for rs10166942 in TRPM8 (OR = 1.33, 95% confidence interval [CI] = 1.14-1.54, Ppermutation = 9.99 × 10-5; risk allele: T) and rs1172113 in LRP1 (OR = 1.23, 95% CI = 1.04-1.45, Ppermutation = 2.9 × 10-2; risk allele: T). Conclusion The present study is the first migraine GWAS conducted in Han-Chinese and Asians. The newly identified susceptibility genes have potential implications in migraine pathogenesis. DLG2 is involved in glutamatergic neurotransmission, and GFRA1 encodes GDNF receptors that are abundant in CGRP-containing trigeminal neurons. Furthermore, positive association signals for TRPM8 and LRP1 suggest the possibility for common genetic contributions across ethnicities.


Assuntos
Predisposição Genética para Doença/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Guanilato Quinases/genética , Transtornos de Enxaqueca/genética , Proteínas Supressoras de Tumor/genética , Adulto , Povo Asiático/genética , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Taiwan
5.
Cell Rep ; 21(8): 2198-2211, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166610

RESUMO

CISD2 is located within the chromosome 4q region frequently deleted in hepatocellular carcinoma (HCC). Mice with Cisd2 heterozygous deficiency develop a phenotype similar to the clinical manifestation of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Cisd2 haploinsufficiency causes a low incidence (20%) of spontaneous HCC and promotes HBV-associated and DEN-induced HCC; conversely, 2-fold overexpression of Cisd2 suppresses HCC in these models. Mechanistically, Cisd2 interacts with Serca2b and mediates its Ca2+ pump activity via modulation of Serca2b oxidative modification, which regulates ER Ca2+ uptake and maintains intracellular Ca2+ homeostasis in the hepatocyte. CISD2 haploinsufficiency disrupts calcium homeostasis, causing ER stress and subsequent NAFLD and NASH. Hemizygous deletion and decreased expression of CISD2 are detectable in a substantial fraction of human HCC specimens. These findings substantiate CISD2 as a haploinsufficient tumor suppressor and highlights Cisd2 as a drug target when developing therapies to treat NAFLD/NASH and prevent HCC.


Assuntos
Cálcio/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Transporte/metabolismo , Haploinsuficiência/genética , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Carcinoma Hepatocelular/metabolismo , Proteínas de Transporte/genética , Homeostase/fisiologia , Humanos , Neoplasias Hepáticas/genética , Proteínas de Membrana/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
6.
Mol Cell Neurosci ; 82: 35-45, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28427888

RESUMO

Zinc ion (Zn2+), the second most abundant transition metal after iron in the body, is essential for neuronal activity and also induces toxicity if the concentration is abnormally high. Our previous results show that exposure of cultured cortical neurons to dopamine elevates intracellular Zn2+ concentrations ([Zn2+]i) and induces autophagosome formation but the mechanism is not clear. In this study, we characterized the signaling pathway responsible for the dopamine-induced elevation of [Zn2+]i and the effect of [Zn2+]i in modulating the autophagy in cultured rat embryonic cortical neurons. N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a membrane-permeable Zn2+ chelator, could rescue the cell death and suppress the autophagosome puncta number induced by dopamine. Dopamine treatment increased the lipidation level of the endogenous microtubule-associated protein 1A/1B-light chain 3 (LC3 II), an autophagosome marker. TPEN added 1h before, but not after, dopamine treatment suppressed the dopamine-induced elevation of LC3 II level. Inhibitors of the dopamine D1-like receptor, protein kinase A (PKA), and NOS suppressed the dopamine-induced elevation of [Zn2+]i. PKA activators and NO generators directly increased [Zn2+]i in cultured neurons. Through cell fractionation, proteins with m.w. values between 5 and 10kD were found to release Zn2+ following NO stimulation. In addition, TPEN pretreatment and an inhibitor against PKA could suppress the LC3 II level increased by NO and dopamine, respectively. Therefore, our results demonstrate that dopamine-induced elevation of [Zn2+]i is mediated by the D1-like receptor-PKA-NO pathway and is important in modulating the cell death and autophagy.


Assuntos
Dopamina/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Zinco/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Células Cultivadas , Quelantes/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Etilenodiaminas/farmacologia , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/efeitos dos fármacos , Óxido Nítrico/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
7.
J Neurochem ; 139(1): 120-33, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27385273

RESUMO

The pathogenesis of Parkinson's disease (PD) is not completely understood, Zinc (Zn(2+) ) and dopamine (DA) have been shown to involve in the degeneration of dopaminergic cells. By microarray analysis, we identified Gadd45b as a candidate molecule that mediates Zn(2+) and DA-induced cell death; the mRNA and protein levels of Gadd45b are increased by Zn(2+) treatment and raised to an even higher level by Zn(2+) plus DA treatment. Zn(2+) plus DA treatment-induced PC12 cell death was enhanced when there was over-expression of Gadd45b and was decreased by knock down of Gadd45b. MAPK p38 and JNK signaling was able to cross-talk with Gadd45b during Zn(2+) and DA treatment. The synergistic effects of Zn(2+) and DA on PC12 cell death can be accounted for by an activation of the Gadd45b-induced cell death pathway and an inhibition of p38/JNK survival pathway. Furthermore, the in vivo results show that the levels of Gadd45b protein expression and phosphorylation of p38 were increased in the substantia nigra by the infusion of Zn(2+) /DA in the mouse brain and the level of Gadd45b mRNA is significantly higher in the substantia nigra of male PD patients than normal controls. The novel role of Gadd45b and its interactions with JNK and p38 will help our understanding of the pathogenesis of PD and help the development of future treatments for PD. Zinc and dopamine are implicated in the degeneration of dopaminergic neurons. We previously demonstrated that zinc and dopamine induced synergistic effects on PC12 cell death. Results from this study show that these synergistic effects can be accounted for by activation of the Gadd45b-induced cell death pathway and inhibition of the p38/JNK survival pathway. We provide in vitro and in vivo evidence to support a novel role for Gadd45b in the pathogenesis of Parkinson's disease.


Assuntos
Antígenos de Diferenciação/efeitos dos fármacos , Antígenos de Diferenciação/genética , Dopamina/toxicidade , Doença de Parkinson/genética , Doença de Parkinson/patologia , Zinco/toxicidade , Acetilcisteína/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Morte Celular/efeitos dos fármacos , Sinergismo Farmacológico , Sequestradores de Radicais Livres/farmacologia , Técnicas de Silenciamento de Genes , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Necrose/patologia , Proteínas Nucleares/genética , Células PC12 , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
J Neurosci ; 36(6): 2027-43, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26865625

RESUMO

Growth-associated protein 43 (GAP43), a protein kinase C (PKC)-activated phosphoprotein, is often implicated in axonal plasticity and regeneration. In this study, we found that GAP43 can be induced by the endotoxin lipopolysaccharide (LPS) in rat brain astrocytes both in vivo and in vitro. The LPS-induced astrocytic GAP43 expression was mediated by Toll-like receptor 4 and nuclear factor-κB (NF-κB)- and interleukin-6/signal transducer and activator of transcription 3 (STAT3)-dependent transcriptional activation. The overexpression of the PKC phosphorylation-mimicking GAP43(S41D) (constitutive active GAP43) in astrocytes mimicked LPS-induced process arborization and elongation, while application of a NF-κB inhibitory peptide TAT-NBD or GAP43(S41A) (dominant-negative GAP43) or knockdown of GAP43 all inhibited astrogliosis responses. Moreover, GAP43 knockdown aggravated astrogliosis-induced microglial activation and expression of proinflammatory cytokines. We also show that astrogliosis-conditioned medium from GAP43 knock-down astrocytes inhibited GAP43 phosphorylation and axonal growth, and increased neuronal damage in cultured rat cortical neurons. These proneurotoxic effects of astrocytic GAP43 knockdown were accompanied by attenuated glutamate uptake and expression of the glutamate transporter excitatory amino acid transporter 2 (EAAT2) in LPS-treated astrocytes. The regulation of EAAT2 expression involves actin polymerization-dependent activation of the transcriptional coactivator megakaryoblastic leukemia 1 (MKL1), which targets the serum response elements in the promoter of rat Slc1a2 gene encoding EAAT2. In sum, the present study suggests that astrocytic GAP43 mediates glial plasticity during astrogliosis, and provides beneficial effects for neuronal plasticity and survival and attenuation of microglial activation. SIGNIFICANCE STATEMENT: Astrogliosis is a complex state in which injury-stimulated astrocytes exert both protective and harmful effects on neuronal survival and plasticity. In this study, we demonstrated for the first time that growth-associated protein 43 (GAP43), a well known growth cone protein that promotes axonal regeneration, can be induced in rat brain astrocytes by the proinflammatory endotoxin lipopolysaccharide via both nuclear factor-κB and signal transducer and activator of transcription 3-mediated transcriptional activation. Importantly, LPS-induced GAP43 mediates plastic changes of astrocytes while attenuating astrogliosis-induced microglial activation and neurotoxicity. Hence, astrocytic GAP43 upregulation may serve to indicate beneficial astrogliosis after CNS injury.


Assuntos
Astrócitos/efeitos dos fármacos , Proteína GAP-43/biossíntese , Proteína GAP-43/genética , Gliose/genética , Microglia/efeitos dos fármacos , NF-kappa B/genética , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/patologia , Fator de Transcrição STAT3/genética , Receptor 4 Toll-Like/genética , Animais , Citocinas/biossíntese , Transportador 2 de Aminoácido Excitatório/biossíntese , Transportador 2 de Aminoácido Excitatório/genética , Ativação de Macrófagos/efeitos dos fármacos , Neurônios , Fosforilação , Ratos , Ratos Sprague-Dawley , Transativadores/biossíntese , Transativadores/genética , Fatores de Transcrição
9.
PLoS Comput Biol ; 7(10): e1002212, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21998575

RESUMO

Morphological dynamics of mitochondria is associated with key cellular processes related to aging and neuronal degenerative diseases, but the lack of standard quantification of mitochondrial morphology impedes systematic investigation. This paper presents an automated system for the quantification and classification of mitochondrial morphology. We discovered six morphological subtypes of mitochondria for objective quantification of mitochondrial morphology. These six subtypes are small globules, swollen globules, straight tubules, twisted tubules, branched tubules and loops. The subtyping was derived by applying consensus clustering to a huge collection of more than 200 thousand mitochondrial images extracted from 1422 micrographs of Chinese hamster ovary (CHO) cells treated with different drugs, and was validated by evidence of functional similarity reported in the literature. Quantitative statistics of subtype compositions in cells is useful for correlating drug response and mitochondrial dynamics. Combining the quantitative results with our biochemical studies about the effects of squamocin on CHO cells reveals new roles of Caspases in the regulatory mechanisms of mitochondrial dynamics. This system is not only of value to the mitochondrial field, but also applicable to the investigation of other subcellular organelle morphology.


Assuntos
Caspases/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Animais , Células CHO , Inibidores de Caspase , Biologia Computacional , Cricetinae , Cricetulus , Inibidores de Cisteína Proteinase/farmacologia , Dimetil Sulfóxido/farmacologia , Furanos/farmacologia , Lactonas/farmacologia , Mitocôndrias/classificação , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Oligopeptídeos/farmacologia , Reconhecimento Automatizado de Padrão/estatística & dados numéricos
10.
Traffic ; 12(10): 1356-70, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21689256

RESUMO

Rab3A is a small G-protein of the Rab family that is involved in the late steps of exocytosis. Here, we studied the role of Rab3A and its relationship with Munc13-1 and Munc18-1 during vesicle priming. Phorbol 12-myristate 13-acetate (PMA) is known to enhance the percentage of fusion-competent vesicles and this is mediated by protein kinase C (PKC)-independent Munc13-1 activation and PKC-dependent dissociation of Munc18-1 from syntaxin 1a. Our results show that the effects of PMA varied in cells overexpressing Rab3A or mutants of Rab3A and in cells with Rab3A knockdown. When Munc13-1 was overexpressed in Rab3A knockdown cells, secretion was completely inhibited. In cells overexpressing a Rab-interacting molecule (RIM)-binding deficient Munc13-1 mutant, 128-Munc13-1, the effects of Rab3A on PMA-induced secretion was abolished. The effect of PMA, which disappeared in cells overexpressing GTP-Rab3A (Q81L), could be reversed by co-expressing Munc18-1 but not its mutant R39C, which is unable to bind to syntaxin 1a. In cells overexpressing Munc18-1, manipulation of Rab3A activity had no effect on secretion. Finally, Munc18-1 enhanced the dissociation of Rab3A, and such enhancement correlated with exocytosis. In summary, our results support the hypothesis that the Rab3A cycle is coupled with the activation of Munc13-1 via RIM, which accounts for the regulation of secretion by Rab3A. Munc18-1 acts downstream of Munc13-1/RIM/Rab3A and interacts with syntaxin 1a allowing vesicle priming. Furthermore, Munc18-1 promotes Rab3A dissociation from vesicles, which then results in fusion.


Assuntos
Exocitose/fisiologia , Proteínas Munc18/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Vesículas Secretórias/fisiologia , Proteína rab3A de Ligação ao GTP/fisiologia , Animais , Microscopia Confocal , Proteínas Munc18/genética , Proteínas do Tecido Nervoso/genética , Células PC12 , Fotodegradação , Ligação Proteica , Transporte Proteico , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vesículas Secretórias/ultraestrutura , Transfecção , Proteína rab3A de Ligação ao GTP/genética , Proteína rab3A de Ligação ao GTP/metabolismo
11.
Microsc Res Tech ; 72(9): 639-49, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19350659

RESUMO

Membrane trafficking is a very important physiological process involved in protein transport, endocytosis, and exocytosis. The functions of vesicles are strongly correlated with various spatial dynamic properties of vesicles, including their types of movements and morphology. Several methods are used to quantify such dynamic properties, but most of them are specific to particular populations of vesicles. We previously developed the so-called PTrack system for quantifying the dynamics of secretory vesicles near the cell surface, which are small and move slowly. To improve the system performance in quantifying large and fast-moving vesicles, we firstly combined morphological filter with two-threshold image processing techniques to locate granules of various sizes. Next, Kalman filtering was used to improve the performance in tracking fast-moving and large granules. Performance evaluation by using simulation image sequences shown that the new system, called PTrack II, yields better tracking accuracy. The tracking system was validated using time-lapse images of insulin granules in betaTC3 cells, which revealed that PTrack II could track better than PTrack, averaged accuracy up to 56%. The overall tracking results indicate that PTrack II is better at tracking vesicles with various dynamic properties, which will facilitate the acquisition of more-complete information on vesicle dynamics.


Assuntos
Microscopia de Fluorescência/instrumentação , Vesículas Secretórias/química , Animais , Linhagem Celular Tumoral , Processamento de Imagem Assistida por Computador , Insulina/metabolismo , Camundongos , Microscopia de Fluorescência/métodos , Transporte Proteico , Vesículas Secretórias/metabolismo
12.
Neuro Oncol ; 10(2): 139-52, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18314418

RESUMO

We tested the herbal extract 2,3,5,6-tetramethylpyrazine (TMP) for possible therapeutic efficacy against a glioma cell line and against gliomas transplanted into rat brains. In the cultured glioma cells, 50 muM TMP significantly inhibited glutamate-induced increase in intracellular calcium. Significant cell damage (30%) and proliferation suppression (10%), however, occurred only at higher concentrations (200-400 microM). Gliomaneuronal co-culturing resulted in significant neuronal damage and higher proliferation of the glioma cells (140%) compared with single cultures. Low concentrations of TMP (< or =200 microM) attenuated the neuronal damage, suppressed glioma migration, and decreased glioma proliferation in the neuronal-glioma co-culture. Gliomas transplanted into the frontal cortical area exhibited high proliferation, with untreated rats dying 10-23 days later. TMP treatment inhibited tumor growth and significantly extended survival time. The results indicate that TMP can suppress glioma activity, including growth, and protect neurons against glioma-induced excitotoxicity, suggesting that TMP may have therapeutic potential in the treatment of malignant gliomas.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Neurônios/efeitos dos fármacos , Pirazinas/uso terapêutico , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Ácido Glutâmico/toxicidade , Microdiálise , Degeneração Neural/induzido quimicamente , Degeneração Neural/prevenção & controle , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Toxicol Appl Pharmacol ; 227(3): 430-9, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18190941

RESUMO

Heavy metal lead (Pb2+) is a pollutant and causes severe toxicity when present in human tissues especially the nervous system. Recent reviews have suggested that Pb2+ can target Ca2+-related proteins within neurons and that Ca2+ channels might be a candidate for Pb2+ entry. This study's main aim was to identify the functional entry pathway of Pb2+ into living cells. We firstly characterized the endogenous expression of Orai1 and STIM1 mRNA together with the level of thapsigargin (TG) stimulated capacitative Ca2+ entry in PC12 and HeLa cells; this was done by RT-PCR and time-lapse Ca2+ imaging microscopy, respectively. Our data supported Orai1 and STIM1 as contributing to store-operated Ca2+ channel (SOC) basal activity. Secondly, using the indo-1 quenching method with the SOC blocker 2-APB, we observed that Pb2+ was able to enter cells directly through unactivated SOCs without TG pretreatment. Thirdly, we further demonstrated that co-expression of Orai1 and STIM1 differentially enhanced SOC functional activity (4-fold with PC12 and 5-fold with HeLa cells) and Pb2+ entry (5- to 7-fold with PC12 and 2-fold with HeLa cells). Furthermore, after a 1 h of Pb2+ exposure, the depolarization- and histamine-induced Ca2+ responses were significantly decreased in both PC12 and HeLa cells in a dose-dependent manner. This result indicated that the decreased Ca2+ responses were, in part, due to Pb2+ entry. In summary, our results suggest that SOCs are responsible for Pb2+ permeation and that the Orai1-STIM1 protein complex formed by functional SOCs is one of the molecular components involved in Pb2+ entry.


Assuntos
Canais de Cálcio/metabolismo , Chumbo/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Transporte Biológico , Compostos de Boro/farmacologia , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/análise , Canais de Cálcio/efeitos dos fármacos , Cátions Bivalentes/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/análise , Proteínas de Neoplasias/análise , Proteína ORAI1 , Células PC12 , Ratos , Molécula 1 de Interação Estromal
14.
Microsc Res Tech ; 71(1): 26-34, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17886343

RESUMO

Exocytosis has been proposed to contain four sequential steps, namely docking, priming, fusion, and recycling, and to be regulated by various proteins-protein interactions. Synaptosomal-associated protein of 25 kDa (SNAP25) has recently been found to bind rabphilin, the Rab3A specific binding protein, in vitro. However, it is still unclear whether SNAP25 and rabphilin interact during exocytosis within cells in vivo. This problem was addressed by the integration of fluorescence resonance energy transfer (FRET) with high sensitivity fluorescence lifetime imaging microscopy (FLIM) to observe this protein-protein interaction. Enhanced green fluorescence protein-labeled SNAP25 (donor) and red fluorescence protein-labeled rabphilin (acceptor) were expressed in neuroendocrine PC12 cells as a FRET pair and ATP stimulation was carried out for various durations. With 10 s stimulation, a 0.17-ns left shift of the lifetime peak was found when compared with donor only. Analysis of the lifetime image further suggested that the lifetime recovered to a similar level as the donor only in a time dependent manner. Four-dimensional (4D) images by FLIM provided useful information indicating that the interaction of SNAP25 and rabphilin occurred particularly within optical sections near cell membrane. Together the results suggest that SNAP25 bound rabphilin loosely at docking step before exocytosis and the binding became tighter at the very start of exocytosis. Finally, these two proteins dissociated after stimulation. To our knowledge, this is the first report to demonstrate the interaction of SNAP25 and rabphilin in situ using the FLIM-FRET technique within neuroendocrine cells.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia de Fluorescência/métodos , Proteínas do Tecido Nervoso/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Proteínas do Tecido Nervoso/genética , Células PC12 , Ligação Proteica/efeitos dos fármacos , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Transfecção , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteína Vermelha Fluorescente
15.
Microsc Res Tech ; 70(2): 119-34, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17146761

RESUMO

Recent technological improvements have made it possible to examine the dynamics of individual vesicles at a very high temporal and spatial resolution. Quantification of the dynamic properties of secretory vesicles is labor-intensive and therefore it is crucial to develop software to automate the process of analyzing vesicle dynamics. Dual-threshold and binary image conversion were applied to enhance images and define the areas of objects of interest that were to be tracked. The movements, changes in fluorescence intensity, and changes in the area of each tracked object were measured using a new software system named the Protein Tracking system (PTrack). Simulations revealed that the system accurately recognized tracked objects and measured their dynamic properties. Comparison of the results from tracking real time-lapsed images manually with those automatically obtained using PTrack revealed similar patterns for changes in fluorescence intensity and a high accuracy (<89%). According to tracking results, PTrack can distinguish different vesicular organelles that are similar in shape, based on their unique dynamic properties. In conclusion, the novel tracking system, PTrack, should facilitate automated quantification of the dynamic properties of vesicles that are important when classifying vesicular protein locations.


Assuntos
Exocitose/fisiologia , Vesículas Secretórias/fisiologia , Animais , Transporte Biológico Ativo , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Neuropeptídeo Y/metabolismo , Células PC12 , Peroxissomos/fisiologia , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Vesículas Secretórias/ultraestrutura , Proteína rab3A de Ligação ao GTP/metabolismo
16.
Chin J Physiol ; 48(2): 107-13, 2005 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16201456

RESUMO

The effects of caffeine on receptor-controlled Ca2+ mobilization and turnover of inositol phosphates in human neuroblastoma SK-N-SH cells were studied. Caffeine inhibited both the rise in cytosolic Ca2+ concentration ([Ca2+]i) evoked by muscarinic receptor agonists and the total production of inositol phosphates in a dose-dependent manner, but to different extents. At 10 mM, caffeine inhibited agonist-evoked generation of inositol phosphates almost completely, whereas the agonist-evoked [Ca2+]i rise remained observable after caffeine treatment, in the absence or presence of extracellular Ca2+. Raising the cytosolic cAMP concentration increased the carbachol-induced [Ca2+]i rise, and this effect was abolished in the presence of caffeine. Our data suggested that caffeine may exert two effects on receptor-controlled Ca2+ mobilization: 1) inhibition of inositol phosphate production, 2) augmentation of the size of the releasable Ca2+ pool by elevating cytosolic cAMP concentration.


Assuntos
Cafeína/farmacologia , Cálcio/metabolismo , Neuroblastoma/metabolismo , Fosfatidilinositóis/metabolismo , Bucladesina/farmacologia , Linhagem Celular Tumoral , Humanos , Neuroblastoma/patologia
17.
Ann N Y Acad Sci ; 1042: 163-7, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15965059

RESUMO

The goal of this study is to examine whether there is a difference in the regulation of Ca2+ between mitochondria near the cell surface and mitochondria in the cytosol. Total internal reflection fluorescence and epifluorescence microscopy were used to monitor changes in the mitochondrial Ca2+ ([Ca2+]mt) between the mitochondria near the plasma membrane and those in the cytosol. The results show that [Ca2+]mt near the plasma membrane increased earlier and decayed slower after high K+ stimulation than average mitochondria in the cytosol. In addition, the changes in [Ca2+]mt in the mitochondria near the cell surface after a second stimulation were larger than those induced by the first stimulation. The results provide direct evidence to support the hypothesis that mitochondria in different subcellular localization show differential responses to the influx of extracellular Ca2+.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Mitocôndrias/metabolismo , Animais , Forma Celular , Microscopia de Fluorescência , Células PC12 , Ratos
18.
Nanomedicine ; 1(4): 286-92, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17292101

RESUMO

Mitochondria are now known to function physiologically not only in the production of ATP as the major cellular energy source, but also in the regulation of intracellular signaling, in, for example, stress-induced apoptosis and buffering of cytosolic calcium. It should be noted, when interpreting mitochondrial studies in situ, that mitochondria within cells show heterogeneity in both function and location. We applied both conventional epifluorescence microscopy (EPIFM) and total-internal-reflection fluorescence microscopy (TIRFM) in this study. Image data taken from TIRFM are excellent and markedly different from those taken from EPIFM. We further investigated the physiological variations of mitochondrial functions using an EPIFM/TIRFM dual-imaging system. This system permits further analysis of functions of mitochondria and other organelles with more precision than is possible using a traditional platform.


Assuntos
Cálcio/metabolismo , Aumento da Imagem/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Microscopia de Vídeo/métodos , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Animais , Células PC12 , Ratos
19.
Neurobiol Dis ; 17(1): 54-61, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15350965

RESUMO

The mechanism that underlies the progressive degeneration of the dopaminergic neurons in Parkinson's disease (PD) is not clear. The Zn(2+) level in the substantia nigra of Parkinson's patients is increased. However, it is unknown whether Zn(2+) has a role in the degeneration of dopaminergic neurons. This study identifies an interaction between dopamine and Zn(2+) that induces cell death. When PC12 cells were pretreated with Zn(2+) before dopamine treatment, dopamine and Zn(2+) synergistically increased cell death, while Zn(2+) and H(2)O(2) had only additive effects on cell death. The synergistic effect appeared to be caused by increased apoptosis rather than necrosis. The synergistic effect was specific for Zn(2+). The synergistic effect was inhibited by thiol antioxidants but was not significantly affected by calcium channel blockers. There is a similar synergistic effect when dopamine and Zn(2+) were coinfused into the striatum, resulting in striatal dopamine content depletion in vivo. Thus, both dopamine oxidation and Zn(2+) are possibly linked to the degeneration of dopaminergic neurons.


Assuntos
Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Doença de Parkinson/etiologia , Zinco/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Dopamina/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Masculino , Células PC12 , Doença de Parkinson/metabolismo , Ratos , Ratos Sprague-Dawley
20.
Neurotoxicology ; 24(1): 97-105, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12564386

RESUMO

Butyl benzyl phthalate (BBP), a plasticizer and an environmental pollutant, exerts genomic estrogenic-like effects via estrogen receptors. In addition to exerting genomic effects via intracellular steroid receptors, estrogen exerts non-genomic effects through interactions with membrane ion channels to lead the rapid alteration of neuronal excitability. Estradiol is known as to have modulating role on nicotinic acetylcholine receptors (nAChR). We investigated the possibility of BBP exerting non-genomic estrogenic-like effects on nAChR in bovine adrenal chromaffin cells. Our results show that BBP inhibited Ca2+ signaling induced by the nicotinic ligands carbachol, 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) and epibatidine (IC50 levels of 4.3, 4.1, 5.4 microM, respectively) as well as high K+ solution (IC50 50.9 microM). Additionally, in the electrophysiological observations, BBP blocked the inward current coupled with nAChR under the stimulation of carbachol. We, therefore, suggest that nAChR and voltage-gated Ca2+ channels are major and minor sites, respectively, of BBP action on the plasma membrane. The inhibitory effect of BBP on nAChR was found to be both noncompetitive and reversible, remaining unchanged as nAChR ligand concentration increased and decreased after washing. BBP was 10 times more potent than estradiol in inhibiting nAChR-coupled Ca2+ signals. We conclude that BBP exerts a novel rapidly inhibitory effect on nAChR.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Catecolaminas/metabolismo , Células Cromafins/efeitos dos fármacos , Ácidos Ftálicos/farmacologia , Receptores Nicotínicos/metabolismo , Medula Suprarrenal/efeitos dos fármacos , Medula Suprarrenal/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Catecolaminas/antagonistas & inibidores , Bovinos , Células Cromafins/metabolismo , Relação Dose-Resposta a Droga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA