Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Lipids Health Dis ; 22(1): 114, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537607

RESUMO

Glioblastoma (GBM) is a highly aggressive and lethal brain tumor with limited treatment options, such as the chemotherapeutic agent, temozolomide (TMZ). However, many GBM tumors develop resistance to TMZ, which is a major obstacle to effective therapy. Recently, dysregulated lipid metabolism has emerged as an important factor contributing to TMZ resistance in GBM. The dysregulation of lipid metabolism is a hallmark of cancer and alterations in lipid metabolism have been linked to multiple aspects of tumor biology, including proliferation, migration, and resistance to therapy. In this review, we aimed to summarize current knowledge on lipid metabolism in TMZ-resistant GBM, including key metabolites and proteins involved in lipid synthesis, uptake, and utilization, and recent advances in the application of metabolomics to study lipid metabolism in GBM. We also discussed the potential of lipid metabolism as a target for novel therapeutic interventions. Finally, we highlighted the challenges and opportunities associated with developing these interventions for clinical use, and the need for further research to fully understand the role of lipid metabolism in TMZ resistance in GBM. Our review suggests that targeting dysregulated lipid metabolism may be a promising approach to overcome TMZ resistance and improve outcomes in patients with GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Metabolismo dos Lipídeos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Biomed Sci ; 29(1): 21, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35337344

RESUMO

BACKGROUND: Sp1 is involved in the recurrence of glioblastoma (GBM) due to the acquirement of resistance to temozolomide (TMZ). Particularly, the role of Sp1 in metabolic reprogramming for drug resistance remains unknown. METHODS: RNA-Seq and mass spectrometry were used to analyze gene expression and metabolites amounts in paired GBM specimens (primary vs. recurrent) and in paired GBM cells (sensitive vs. resistant). ω-3/6 fatty acid and arachidonic acid (AA) metabolism in GBM patients were analyzed by targeted metabolome. Mitochondrial functions were determined by Seahorse XF Mito Stress Test, RNA-Seq, metabolome and substrate utilization for producing ATP. Therapeutic options targeting prostaglandin (PG) E2 in TMZ-resistant GBM were validated in vitro and in vivo. RESULTS: Among the metabolic pathways, Sp1 increased the prostaglandin-endoperoxide synthase 2 expression and PGE2 production in TMZ-resistant GBM. Mitochondrial genes and metabolites were obviously increased by PGE2, and these characteristics were required for developing resistance in GBM cells. For inducing TMZ resistance, PGE2 activated mitochondrial functions, including fatty acid ß-oxidation (FAO) and tricarboxylic acid (TCA) cycle progression, through PGE2 receptors, E-type prostanoid (EP)1 and EP3. Additionally, EP1 antagonist ONO-8713 inhibited the survival of TMZ-resistant GBM synergistically with TMZ. CONCLUSION: Sp1-regulated PGE2 production activates FAO and TCA cycle in mitochondria, through EP1 and EP3 receptors, resulting in TMZ resistance in GBM. These results will provide us a new strategy to attenuate drug resistance or to re-sensitize recurred GBM.


Assuntos
Glioblastoma , Apoptose/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Ácidos Graxos/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Mitocôndrias , Temozolomida/farmacologia
3.
J Steroid Biochem Mol Biol ; 219: 106067, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35114375

RESUMO

Allopregnanolone (allo) is a physiological regulator of neuronal activity that treats multiple neurological disorders. Allo penetrates the blood-brain barrier with very high efficiency, implying that allo can treat CNS-related diseases, including glioblastoma (GBM), which always recurs after standard therapy. Hence, this study aimed to determine whether allo has a therapeutic effect on GBM. We found that allo enhanced temozolomide (TMZ)-suppressed cell survival and proliferation of TMZ-resistant cells. In particular, allo enhanced TMZ-inhibited cell migration and TMZ-induced apoptosis. Additionally, allo strongly induced DNA damage characterized by γH2Ax. Furthermore, quantitative proteomic analysis, iTRAQ, showed that allo significantly decreased the levels of DPYSL3, S100A11, and S100A4, reflecting the poor prognosis of patients with GBM confirmed by differential gene expression and survival analysis. Moreover, single-cell RNA-Seq revealed that S100A11, expressed in malignant cells, oligodendrocytes, and macrophages, was significantly associated with immune cell infiltration. Furthermore, overexpression of DPYSL3 or S100A11 prevented allo-induced cell death. In conclusion, allo suppresses GBM cell survival by decreasing DPYSL3/S100A11 expression and inducing DNA damage.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Proteínas Musculares , Pregnanolona , Proteínas S100 , Antineoplásicos Alquilantes , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/biossíntese , Recidiva Local de Neoplasia , Pregnanolona/farmacologia , Proteômica , Proteínas S100/antagonistas & inibidores , Proteínas S100/biossíntese , Temozolomida/farmacologia
4.
Dev Dyn ; 251(3): 444-458, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34374463

RESUMO

BACKGROUND: Proper guidance of neuronal axons to their targets is required to assemble neural circuits during the development of the nervous system. However, the mechanism by which the guidance of axonal growth cones is regulated by specific intermediaries activated by receptor signaling pathways to mediate cytoskeleton dynamics is unclear. Vav protein members have been proposed to mediate this process, prompting us to investigate their role in the limb selection of the axon trajectory of spinal lateral motor column (LMC) neurons. RESULTS: We found Vav2 and Vav3 expression in LMC neurons when motor axons grew into the limb. Vav2, but not Vav3, loss-of-function perturbed LMC pathfinding, while Vav2 gain-of-function exhibited the opposite effects, demonstrating that Vav2 plays an important role in motor axon growth. Vav2 knockdown also attenuated the redirectional phenotype of LMC axons induced by Dcc, but not EphA4, in vivo and lateral LMC neurite growth preference to Netrin-1 in vitro. This study showed that Vav2 knockdown and ectopic nonphosphorylable Vav2 mutant expression abolished the Src-induced stronger growth preference of lateral LMC neurites to Netrin-1, suggesting that Vav2 is downstream of Src in this context. CONCLUSIONS: Vav2 is essential for Netrin-1-regulated LMC motor axon pathfinding through Src interaction.


Assuntos
Orientação de Axônios , Cones de Crescimento , Netrina-1 , Proteínas Proto-Oncogênicas c-vav , Animais , Orientação de Axônios/fisiologia , Axônios/fisiologia , Cones de Crescimento/fisiologia , Neurônios Motores/fisiologia , Netrina-1/fisiologia , Proteínas Proto-Oncogênicas c-vav/fisiologia
5.
Front Surg ; 9: 989372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36632522

RESUMO

Background: Oblique lateral interbody fusion (OLIF) is a type of minimally invasive lateral lumbar interbody fusion technique used for treating lumbar degenerative diseases. This study aimed to analyze the clinical and radiographic efficacy of OLIF with anterolateral screw fixation alone and OLIF requiring fixation with conventional posterior percutaneous pedicle screws for lumbar diseases. Methods: Medical records of consecutive patients admitted to Cheng-Hsin Hospital who received OLIF between January 2019 and December 2020 were retrospectively reviewed. Patients were divided into two groups by screw fixation: patients who received anterolateral screw fixation alone were defined as one-stage OLIF (n = 9) and patients who received fixation with conventional posterior percutaneous pedicle screw were defined as two-stage OLIF (n = 16). Patient clinical characteristics, medical history, intraoperative blood loss, length of hospital stay, peri-operative, and post-operative complications were evaluated in all patients. Results: During the study period, a total of 25 patients were successfully treated with OLIF (n = 9 one-stage; n = 16 two-stage). Two-stage OLIF was associated with longer operation times, longer hospital stays, shorter bed-rest time, and a greater likelihood of having a blood transfusion compared with the one-stage OLIF group. A higher proportion of grade I subsidence was observed at 6 months and 1 year after surgery in the two-stage group compared with the one-stage group. Post-operative complications included ileus, dystonia, and dystonia were higher in the two-stage OLIF group. Improvements in radiographic parameters were demonstrated after OLIF, and the improvements were comparable between one-stage and two-stage OLIF. Conclusions: One-stage OLIF is a feasible and efficacious treatment method for single- and multiple-level degenerative lumbar diseases. Additional clinical follow-up is necessary to confirm long-term outcomes.

6.
Diagnostics (Basel) ; 11(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34943457

RESUMO

The complexity of breast cancer includes many interacting biological processes, and proteasome alpha (PSMA) subunits are reported to be involved in many cancerous diseases, although the transcriptomic expression of this gene family in breast cancer still needs to be more thoroughly investigated. Consequently, we used a holistic bioinformatics approach to study the PSMA genes involved in breast cancer by integrating several well-established high-throughput databases and tools, such as cBioPortal, Oncomine, and the Kaplan-Meier plotter. Additionally, correlations of breast cancer patient survival and PSMA messenger RNA expressions were also studied. The results demonstrated that breast cancer tissues had higher expression levels of PSMA genes compared to normal breast tissues. Furthermore, PSMA2, PSMA3, PSMA4, PSMA6, and PSMA7 showed high expression levels, which were correlated with poor survival of breast cancer patients. In contrast, PSMA5 and PSMA8 had high expression levels, which were associated with good prognoses. We also found that PSMA family genes were positively correlated with the cell cycle, ubiquinone metabolism, oxidative stress, and immune response signaling, including antigen presentation by major histocompatibility class, interferon-gamma, and the cluster of differentiation signaling. Collectively, these findings suggest that PSMA genes have the potential to serve as novel biomarkers and therapeutic targets for breast cancer. Nevertheless, the bioinformatic results from the present study would be strengthened with experimental validation in the future by prospective studies on the underlying biological mechanisms of PSMA genes and breast cancer.

7.
Aging (Albany NY) ; 13(22): 24882-24913, 2021 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-34839279

RESUMO

The complexity of breast cancer includes many interacting biological processes that make it difficult to find appropriate therapeutic treatments. Therefore, identifying potential diagnostic and prognostic biomarkers is urgently needed. Previous studies demonstrated that 26S proteasome delta subunit, non-ATPase (PSMD) family members significantly contribute to the degradation of damaged, misfolded, abnormal, and foreign proteins. However, transcriptional expressions of PSMD family genes in breast cancer still remain largely unexplored. Consequently, we used a holistic bioinformatics approach to explore PSMD genes involved in breast cancer patients by integrating several high-throughput databases, including The Cancer Genome Atlas (TCGA), cBioPortal, Oncomine, and Kaplan-Meier plotter. These data demonstrated that PSMD1, PSMD2, PSMD3, PSMD7, PSMD10, PSMD12, and PSMD14 were expressed at significantly higher levels in breast cancer tissue compared to normal tissues. Notably, the increased expressions of PSMD family genes were correlated with poor prognoses of breast cancer patients, which suggests their roles in tumorigenesis. Meanwhile, network and pathway analyses also indicated that PSMD family genes were positively correlated with ubiquinone metabolism, immune system, and cell-cycle regulatory pathways. Collectively, this study revealed that PSMD family members are potential prognostic biomarkers for breast cancer progression and possible promising clinical therapeutic targets.


Assuntos
Neoplasias da Mama , Complexo de Endopeptidases do Proteassoma/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Humanos , Prognóstico , Complexo de Endopeptidases do Proteassoma/metabolismo , Transcriptoma/genética , Transcriptoma/imunologia
8.
Biomedicines ; 9(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34680577

RESUMO

Colorectal cancer (CRC) is one of the world's leading causes of cancer-related deaths; thus, it is important to detect it as early as possible. Obesity is thought to be linked to a large rise in the CRC incidence as a result of bad dietary choices, such as a high intake of animal fats. Fatty acid-binding proteins (FABPs) are a set of molecules that coordinate intracellular lipid responses and are highly associated with metabolism and inflammatory pathways. There are nine types of FABP genes that have been found in mammals, which are FABP1-7, FABP9, and FABP12. Each FABP gene has its own roles in different organs of the body; hence, each one has different expression levels in different cancers. The roles of FABP family genes in the development of CRC are still poorly understood. We used a bioinformatics approach to examine FABP family gene expression profiles using the Oncomine, GEPIA, PrognoScan, STRING, cBioPortal, MetaCore, and TIMER platforms. Results showed that the FABP6 messenger (m)RNA level is overexpressed in CRC cells compared to normal cells. The overexpression of FABP6 was found to be related to poor prognosis in CRC patients' overall survival. The immunohistochemical results in the Human Protein Atlas showed that FABP1 and FABP6 exhibited strong staining in CRC tissues. An enrichment analysis showed that high expression of FABP6 was significantly correlated with the role of microRNAs in cell proliferation in the development of CRC through the insulin-like growth factor (IGF) signaling pathway. FABP6 functions as an intracellular bile-acid transporter in the ileal epithelium. We looked at FABP6 expression in CRC since bile acids are important in the carcinogenesis of CRC. In conclusion, high FABP6 expression is expected to be a potential biomarker for detecting CRC at the early stage.

9.
Cell Death Dis ; 12(10): 884, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584069

RESUMO

DNA repair promotes the progression and recurrence of glioblastoma (GBM). However, there remain no effective therapies for targeting the DNA damage response and repair (DDR) pathway in the clinical setting. Thus, we aimed to conduct a comprehensive analysis of DDR genes in GBM specimens to understand the molecular mechanisms underlying treatment resistance. Herein, transcriptomic analysis of 177 well-defined DDR genes was performed with normal and GBM specimens (n = 137) from The Cancer Genome Atlas and further integrated with the expression profiling of histone deacetylase 6 (HDAC6) inhibition in temozolomide (TMZ)-resistant GBM cells and patient-derived tumor cells. The effects of HDAC6 inhibition on DDR signaling were examined both in vitro and intracranial mouse models. We found that the expression of DDR genes, involved in repair pathways for DNA double-strand breaks, was upregulated in highly malignant primary and recurrent brain tumors, and their expression was related to abnormal clinical features. However, a potent HDAC6 inhibitor, MPT0B291, attenuated the expression of these genes, including RAD51 and CHEK1, and was more effective in blocking homologous recombination repair in GBM cells. Interestingly, it resulted in lower cytotoxicity in primary glial cells than other HDAC6 inhibitors. MPT0B291 reduced the growth of both TMZ-sensitive and TMZ-resistant tumor cells and prolonged survival in mouse models of GBM. We verified that HDAC6 regulated DDR genes by affecting Sp1 expression, which abolished MPT0B291-induced DNA damage. Our findings uncover a regulatory network among HDAC6, Sp1, and DDR genes for drug resistance and survival of GBM cells. Furthermore, MPT0B291 may serve as a potential lead compound for GBM therapy.


Assuntos
Dano ao DNA , Glioblastoma/enzimologia , Glioblastoma/patologia , Desacetilase 6 de Histona/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Dano ao DNA/genética , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Desacetilase 6 de Histona/antagonistas & inibidores , Humanos , Indóis , Masculino , Camundongos Endogâmicos NOD , Proteínas de Neoplasias/metabolismo , Neuroglia/metabolismo , Piridinas , Temozolomida/farmacologia
10.
Diagnostics (Basel) ; 11(7)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34359286

RESUMO

Breast cancer is a heterogeneous disease involving complex interactions of biological processes; thus, it is important to develop therapeutic biomarkers for treatment. Members of the dipeptidyl peptidase (DPP) family are metalloproteases that specifically cleave dipeptides. This family comprises seven members, including DPP3, DPP4, DPP6, DPP7, DPP8, DPP9, and DPP10; however, information on the involvement of DPPs in breast cancer is lacking in the literature. As such, we aimed to study their roles in this cancerous disease using publicly available databases such as cBioportal, Oncomine, and Kaplan-Meier Plotter. These databases comprise comprehensive high-throughput transcriptomic profiles of breast cancer across multiple datasets. Furthermore, together with investigating the messenger RNA expression levels of these genes, we also aimed to correlate these expression levels with breast cancer patient survival. The results showed that DPP3 and DPP9 had significantly high expression profiles in breast cancer tissues relative to normal breast tissues. High expression levels of DPP3 and DPP4 were associated with poor survival of breast cancer patients, whereas high expression levels of DPP6, DPP7, DPP8, and DPP9 were associated with good prognoses. Additionally, positive correlations were also revealed of DPP family genes with the cell cycle, transforming growth factor (TGF)-beta, kappa-type opioid receptor, and immune response signaling, such as interleukin (IL)-4, IL6, IL-17, tumor necrosis factor (TNF), and interferon (IFN)-alpha/beta. Collectively, DPP family members, especially DPP3, may serve as essential prognostic biomarkers in breast cancer.

11.
Aging (Albany NY) ; 13(14): 17970, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34329194

RESUMO

Breast cancer is a complex disease, and several processes are involved in its development. Therefore, potential therapeutic targets need to be discovered for these patients. Proteasome 26S subunit, ATPase gene (PSMC) family members are well reported to be involved in protein degradation. However, their roles in breast cancer are still unknown and need to be comprehensively researched. Leveraging publicly available databases, such as cBioPortal and Oncomine, for high-throughput transcriptomic profiling to provide evidence-based targets for breast cancer is a rapid and robust approach. By integrating the aforementioned databases with the Kaplan-Meier plotter database, we investigated potential roles of six PSMC family members in breast cancer at the messenger RNA level and their correlations with patient survival. The present findings showed significantly higher expression profiles of PSMC2, PSMC3, PSMC4, PSMC5, and PSMC6 in breast cancer compared to normal breast tissues. Besides, positive correlations were also revealed between PSMC family genes and ubiquinone metabolism, cell cycle, and cytoskeletal remodeling. Meanwhile, we discovered that high levels of PSMC1, PSMC3, PSMC4, PSMC5, and PSMC6 transcripts were positively correlated with poor survival, which likely shows their importance in breast cancer development. Collectively, PSMC family members have the potential to be novel and essential prognostic biomarkers for breast cancer development.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Complexo de Endopeptidases do Proteassoma/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Conjuntos de Dados como Assunto , Intervalo Livre de Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Prognóstico , RNA Mensageiro/genética
12.
J Neurosci ; 41(17): 3808-3821, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33727334

RESUMO

To assemble the functional circuits of the nervous system, the neuronal axonal growth cones must be precisely guided to their proper targets, which can be achieved through cell-surface guidance receptor activation by ligand binding in the periphery. We investigated the function of paxillin, a focal adhesion protein, as an essential growth cone guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory selection in the limb mesenchyme. Using in situ mRNA detection, we first show paxillin expression in LMC neurons of chick and mouse embryos at the time of spinal motor axon extension into the limb. Paxillin loss-of-function and gain-of-function using in ovo electroporation in chick LMC neurons, of either sex, perturbed LMC axon trajectory selection, demonstrating an essential role of paxillin in motor axon guidance. In addition, a neuron-specific paxillin deletion in mice led to LMC axon trajectory selection errors. We also show that knocking down paxillin attenuates the growth preference of LMC neurites against ephrins in vitro, and erythropoietin-producing human hepatocellular (Eph)-mediated retargeting of LMC axons in vivo, suggesting paxillin involvement in Eph-mediated LMC motor axon guidance. Finally, both paxillin knockdown and ectopic expression of a nonphosphorylable paxillin mutant attenuated the retargeting of LMC axons caused by Src overexpression, implicating paxillin as a Src target in Eph signal relay in this context. In summary, our findings demonstrate that paxillin is required for motor axon guidance and suggest its essential role in the ephrin-Eph signaling pathway resulting in motor axon trajectory selection.SIGNIFICANCE STATEMENT During the development of neural circuits, precise connections need to be established among neurons or between neurons and their muscle targets. A protein family found in neurons, Eph, is essential at different stages of neural circuit formation, including nerve outgrowth and pathfinding, and is proposed to mediate the onset and progression of several neurodegenerative diseases, such as Alzheimer's disease. To investigate how Ephs relay their signals to mediate nerve growth, we investigated the function of a molecule called paxillin and found it important for the development of spinal nerve growth toward their muscle targets, suggesting its role as an effector of Eph signals. Our work could thus provide new information on how neuromuscular connectivity is properly established during embryonic development.


Assuntos
Axônios/fisiologia , Paxilina/fisiologia , Medula Espinal/crescimento & desenvolvimento , Animais , Orientação de Axônios/fisiologia , Embrião de Galinha , Eletroporação , Efrinas/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Genes src/genética , Humanos , Masculino , Camundongos , MicroRNAs/genética , Neurônios Motores/fisiologia , Mutação/genética , Neuritos/fisiologia , Medula Espinal/citologia
13.
Medicine (Baltimore) ; 100(7): e24321, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33607766

RESUMO

ABSTRACT: Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 induces severe infection, and it is responsible for a worldwide disease outbreak starting in late 2019. Currently, there are no effective medications against coronavirus. In the present study, we utilized a holistic bioinformatics approach to study gene signatures of SARS-CoV- and SARS-CoV-2-infected Calu-3 lung adenocarcinoma cells. Through the Gene Ontology platform, we determined that several cytokine genes were up-regulated after SARS-CoV-2 infection, including TNF, IL6, CSF2, IFNL1, IL-17C, CXCL10, and CXCL11. Differentially regulated pathways were detected by the Kyoto Encyclopedia of Genes and Genomes, gene ontology, and Hallmark platform, including chemokines, cytokines, cytokine receptors, cytokine metabolism, inflammation, immune responses, and cellular responses to the virus. A Venn diagram was utilized to illustrate common overlapping genes from SARS-CoV- and SARS-CoV-2-infected datasets. An Ingenuity pathway analysis discovered an enrichment of tumor necrosis factor- (TNF-) and interleukin (IL)-17-related signaling in a gene set enrichment analysis. Downstream networks were predicted by the Database for Annotation, Visualization, and Integrated Discovery platform also revealed that TNF and TNF receptor 2 signaling elicited leukocyte recruitment, activation, and survival of host cells after coronavirus infection. Our discovery provides essential evidence for transcript regulation and downstream signaling of SARS-CoV and SARS-CoV-2 infection.


Assuntos
COVID-19/genética , COVID-19/imunologia , Quimiocinas/biossíntese , Citocinas/biossíntese , Mediadores da Inflamação/metabolismo , Linhagem Celular Tumoral , Quimiocinas/genética , Citocinas/genética , Perfilação da Expressão Gênica , Ontologia Genética , Interações Hospedeiro-Patógeno , Humanos , Interleucina-17/biossíntese , Receptores Tipo II do Fator de Necrose Tumoral/biossíntese , SARS-CoV-2 , Fator de Necrose Tumoral alfa/biossíntese , Regulação para Cima
14.
Exp Physiol ; 106(4): 1038-1060, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33512049

RESUMO

NEW FINDINGS: What is the central question of this study? Does peripheral non-invasive focused ultrasound targeted to the celiac plexus improve inflammatory bowel disease? What is the main finding and its importance? Peripheral non-invasive focused ultrasound targeted to the celiac plexus in a rat model of ulcerative colitis improved stool consistency and reduced stool bloodiness, which coincided with a longer and healthier colon than in animals without focused ultrasound treatment. The findings suggest that this novel neuromodulatory technology could serve as a plausible therapeutic approach for improving symptoms of inflammatory bowel disease. ABSTRACT: Individuals suffering from inflammatory bowel disease (IBD) experience significantly diminished quality of life. Here, we aim to stimulate the celiac plexus with non-invasive peripheral focused ultrasound (FUS) to modulate the enteric cholinergic anti-inflammatory pathway. This approach may have clinical utility as an efficacious IBD treatment given the non-invasive and targeted nature of this therapy. We employed the dextran sodium sulfate (DSS) model of colitis, administering lower (5%) and higher (7%) doses to rats in drinking water. FUS on the celiac plexus administered twice a day for 12 consecutive days to rats with severe IBD improved stool consistency scores from 2.2 ± 1 to 1.0 ± 0.0 with peak efficacy on day 5 and maximum reduction in gross bleeding scores from 1.8 ± 0.8 to 0.8 ± 0.8 on day 6. Similar improvements were seen in animals in the low dose DSS group, who received FUS only once daily for 12 days. Moreover, animals in the high dose DSS group receiving FUS twice daily maintained colon length (17.7 ± 2.5 cm), while rats drinking DSS without FUS exhibited marked damage and shortening of the colon (13.8 ± 0.6 cm) as expected. Inflammatory cytokines such as interleukin (IL)-1ß, IL-6, IL-17, tumour necrosis factor-α and interferon-γ were reduced with DSS but coincided with control levels after FUS, which is plausibly due to a loss of colon crypts in the former and healthier crypts in the latter. Lastly, overall, these results suggest non-invasive FUS of peripheral ganglion can deliver precision therapy to improve IBD symptomology.


Assuntos
Plexo Celíaco , Colite , Doenças Inflamatórias Intestinais , Animais , Plexo Celíaco/metabolismo , Plexo Celíaco/patologia , Colite/tratamento farmacológico , Colite/metabolismo , Colite/patologia , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/metabolismo , Sulfato de Dextrana/uso terapêutico , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/terapia , Ratos
15.
Cancers (Basel) ; 12(4)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326583

RESUMO

Patients with glioblastoma are at high risk of local recurrences after initial treatment with standard therapy, and recurrent tumor cells appear to be resistant to first-line drug temozolomide. Thus, finding an effective second-line agent for treating primary and recurrent glioblastomas is critical. Betulinic acid (BA), a natural product of plant origin, can cross the blood-brain barrier. Here, we investigated the antitumor effects of BA on typical glioblastoma cell lines and primary glioblastoma cells from patients, as well as corresponding temozolomide-resistant cells. Our findings verified that BA significantly reduced growth in all examined cells. Furthermore, gene-expression array analysis showed that the unfolded-protein response was significantly affected by BA. Moreover, BA treatment increased activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/C/EBP homologous protein (CHOP) apoptotic pathway, and reduced specificity protein 1 (Sp1) expression. However, Sp1 overexpression reversed the observed cell-growth inhibition and PERK/CHOP signaling activation induced by BA. Because temozolomide-resistant cells exhibited significantly increased Sp1 expression, we concluded that Sp1-mediated PERK/CHOP signaling inhibition protects glioblastoma against cancer therapies; hence, BA treatment targeting this pathway can be considered as an effective therapeutic strategy to overcome such chemoresistance and tumor relapse.

16.
Redox Biol ; 30: 101413, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896509

RESUMO

Drug resistance is the main obstacle in the improvement of chemotherapeutic efficacy in glioblastoma. Previously, we showed that dehydroepiandrosterone (DHEA), one kind of androgen/neurosteroid, potentiates glioblastoma to acquire resistance through attenuating DNA damage. Androgen receptor (AR) activated by DHEA or other types of androgen was reported to promote drug resistance in prostate cancer. However, in DHEA-enriched microenvironment, the role of AR in acquiring resistance of glioblastoma remains unknown. In this study, we found that AR expression is significantly correlated with poor prognosis, and AR obviously induced the resistance to temozolomide (TMZ) treatment. Herein, we observed that ALZ003, a curcumin analog, induces FBXL2-mediated AR ubiquitination, leading to degradation. Importantly, ALZ003 significantly inhibited the survival of TMZ-sensitive and -resistant glioblastoma in vitro and in vivo. The accumulation of reactive oxygen species (ROS), lipid peroxidation and suppression of glutathione peroxidase (GPX) 4, which are characteristics of ferroptosis, were observed in glioblastoma cell after treatment of ALZ003. Furthermore, overexpression of AR prevented ferroptosis in the presence of GPX4. To evaluate the therapeutic effect in vivo, we transplanted TMZ-sensitive or -resistant U87MG cells into mouse brain followed by intravenous administration with ALZ003. In addition to inhibiting the growth of glioblastoma, ALZ003 significantly extended the survival period of transplanted mice, and significantly decreased AR expression in the tumor area. Taken together, AR potentiates TMZ resistance for glioblastoma, and ALZ003-mediated AR ubiquitination might open a new insight into therapeutic strategy for TMZ resistant glioblastoma.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Curcumina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Receptores Androgênicos/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteínas F-Box/metabolismo , Glioblastoma/metabolismo , Humanos , Masculino , Camundongos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Cultura Primária de Células , Proteólise , Células Tumorais Cultivadas , Microambiente Tumoral/efeitos dos fármacos , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Int J Mol Sci ; 20(22)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31717924

RESUMO

Glioblastoma (GBM) is the most aggressive type of brain tumor, with strong invasiveness and a high tolerance to chemotherapy. Despite the current standard treatment combining temozolomide (TMZ) and radiotherapy, glioblastoma can be incurable due to drug resistance. The existence of glioma stem-like cells (GSCs) is considered the major reason for drug resistance. However, the mechanism of GSC enrichment remains unclear. Herein, we found that the expression and secretion of angiopoietin-like 4 protein (ANGPTL4) were clearly increased in GSCs. The overexpression of ANGPTL4 induced GSC enrichment that was characterized by polycomb complex protein BMI-1 and SRY (sex determining region Y)-box 2 (SOX2) expression, resulting in TMZ resistance in GBM. Furthermore, epidermal growth factor receptor (EGFR) phosphorylation induced 4E-BP1 phosphorylation that was required for ANGPTL4-induced GSC enrichment. In particular, ANGPTL4 induced 4E-BP1 phosphorylation by activating phosphoinositide 3-kinase (PI3K)/AKT and extracellular signal-regulated kinase (ERK) cascades for inducing stemness. To elucidate the mechanism contributing to ANGPTL4 upregulation in GSCs, chromatin immunoprecipitation coupled with sequencing (ChIP-Seq) revealed that specificity protein 4 (Sp4) was associated with the promoter region, -979 to -606, and the luciferase reporter assay revealed that Sp4 positively regulated activity of the ANGPTL4 promoter. Moreover, both ANGPTL4 and Sp4 were highly expressed in GBM and resulted in a poor prognosis. Taken together, Sp4-mediated ANGPTL4 upregulation induces GSC enrichment through the EGFR/AKT/4E-BP1 cascade.


Assuntos
Proteína 4 Semelhante a Angiopoietina/metabolismo , Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Antineoplásicos Alquilantes/farmacologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Receptores ErbB/metabolismo , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Temozolomida/farmacologia
18.
Cancers (Basel) ; 11(9)2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527549

RESUMO

Cytochrome P450 (CYP) 17A1 is an important steroidogenic enzyme harboring 17α-hydroxylase and performing 17,20 lyase activities in multiple steps of steroid hormone synthesis, including dehydroepiandrosterone (DHEA) biosynthesis. Previously, we showed that CYP17A1-mediated DHEA production clearly protects glioblastomas from temozolomide-induced apoptosis, leading to drug resistance. Herein, we attempt to clarify whether the inhibition of CYP17A1 has a tumor-suppressive effect, and to determine the steroidogenesis-independent functions of CYP17A1 in glioblastomas. Abiraterone, an inhibitor of CYP17A1, significantly inhibits the proliferation of A172, T98G, and PT#3 (the primary glioblastoma cells) by inducing apoptosis. In parallel, abiraterone potently suppresses tumor growth in mouse models through transplantation of PT#3 cells to the back or to the brain. Based on evidence that abiraterone induces endoplasmic reticulum (ER) stress, followed by the accumulation of reactive oxygen species (ROS), CYP17A1 is important for ER health and redox homeostasis. To confirm our hypothesis, we showed that CYP17A1 overexpression prevents the initiation of ER stress and attenuates ROS production by regulating SAR1a/b expression. Abiraterone dissociates SAR1a/b from ER-localized CYP17A1, and induces SAR1a/b ubiquitination, leading to degradation. Furthermore, SAR1 overexpression rescues abiraterone-induced apoptosis and impairs redox homeostasis. In addition to steroid hormone synthesis, CYP17A1 associates with SAR1a/b to regulate protein processing and maintain ER health in glioblastomas.

19.
J Neuroinflammation ; 16(1): 146, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300060

RESUMO

BACKGROUND: The small population of glioma stem-like cells (GSCs) contributes to tumor initiation, malignancy, and recurrence in glioblastoma. However, the maintenance of GSC properties in the tumor microenvironment remains unclear. In glioma, non-neoplastic cells create an inflammatory environment and subsequently mediate tumor progression and maintenance. Transcriptional factor CCAAT/enhancer-binding protein delta (CEBPD) is suggested to regulate various genes responsive to inflammatory cytokines, thus prompting us to investigate its role in regulating GSCs stemness after inflammatory stimulation. METHODS: Stemness properties were analyzed by using spheroid formation. Oncomine and TCGA bioinformatic databases were used to analyze gene expression. Western blotting, quantitative real-time polymerase chain reaction, luciferase reporter assay, and chromatin immunoprecipitation assay were used to analyze proteins and gene transcript levels. The glioma tissue microarrays were used for CEBPD and PDGFA expression by immunohistochemistry staining. RESULTS: We first found that IL-1ß promotes glioma spheroid formation and is associated with elevated CEBPD expression. Using microarray analysis, platelet-derived growth factor subunit A (PDGFA) was confirmed as a CEBPD-regulated gene that mediates IL-1ß-enhanced GSCs self-renewal. Further analysis of the genomic database and tissue array revealed that the expression levels between CEBPD and PDGFA were coincident in glioma patient samples. CONCLUSION: This is the first report showing the activation of PDGFA expression by CEBPD through IL-1ß treatment and a novel CEBPD function in maintaining the self-renewal feature of GSCs.


Assuntos
Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioma/patologia , Células-Tronco Neoplásicas/patologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Linhagem Celular Tumoral , Glioma/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Células-Tronco Neoplásicas/metabolismo
20.
J Biomed Sci ; 26(1): 30, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31027502

RESUMO

BACKGROUND: Promyelocytic leukemia zinc finger (Plzf), a transcriptional regulator involved in a lot of important biological processes during development, has been implied to maintain neural stem cells and inhibit their differentiation into neurons. However, the effects of Plzf on brain structures and functions are still not clarified. RESULTS: We showed that Plzf expression was detected as early as embryonic day (E) 9.5 in Pax6+ cells in the mouse brain, and was completely disappeared in telencephalon before the initiation of cortical neurogenesis. Loss of Plzf resulted in a smaller cerebral cortex with a decrease in the number of Tbr1+ deep layer neurons due to a decrease of mitotic cell number in the ventricular zone of forebrain at early developmental stage. Microarray, qRT-PCR, and flow cytometry analysis identified dysregulation of Mash1 proneural gene expression. We also observed an impairment of recognition memory in Plzf-deficient mice. CONCLUSIONS: Plzf is expressed at early stages of brain development and involved in the formation of deep layer cortical neurons. Loss of Plzf results in dysregulation of Mash1, microcephaly with reduced numbers of early-born neurons, and impairment of recognition memory.


Assuntos
Expressão Gênica/fisiologia , Neurogênese/genética , Neurônios/fisiologia , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Animais , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Camundongos , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA