Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 23(1): 301-315, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38064546

RESUMO

Mitochondrial division inhibitor 1 (Mdivi-1) is a well-known synthetic compound aimed at inhibiting dynamin-related protein 1 (Drp1) to suppress mitochondrial fission, making it a valuable tool for studying mitochondrial dynamics. However, its specific effects beyond Drp1 inhibition remain to be confirmed. In this study, we employed integrative proteomics and phosphoproteomics to delve into the molecular responses induced by Mdivi-1 in SK-N-BE(2)C cells. A total of 3070 proteins and 1945 phosphorylation sites were identified, with 880 of them represented as phosphoproteins. Among these, 266 proteins and 97 phosphorylation sites were found to be sensitive to the Mdivi-1 treatment. Functional enrichment analysis unveiled their involvement in serine biosynthesis and extrinsic apoptotic signaling pathways. Through targeted metabolomics, we observed that Mdivi-1 enhanced intracellular serine biosynthesis while reducing the production of C24:1-ceramide. Within these regulated phosphoproteins, dynamic dephosphorylation of proteasome subunit alpha type 3 serine 250 (PSMA3-S250) occurred after Mdivi-1 treatment. Further site-directed mutagenesis experiments revealed that the dephosphorylation-deficient mutant PSMA3-S250A exhibited a decreased cell survival. This research confirms that Mdivi-1's inhibition of mitochondrial division leads to various side effects, ultimately influencing cell survival, rather than solely targeting Drp1 inhibition.


Assuntos
Multiômica , Neuroblastoma , Humanos , Apoptose , Fosfoproteínas , Serina , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética
2.
Commun Biol ; 6(1): 642, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322056

RESUMO

ABSTARCT: Ectopic ATP synthase on the plasma membrane (eATP synthase) has been found in various cancer types and is a potential target for cancer therapy. However, whether it provides a functional role in tumor progression remains unclear. Here, quantitative proteomics reveals that cancer cells under starvation stress express higher eATP synthase and enhance the production of extracellular vesicles (EVs), which are vital regulators within the tumor microenvironment. Further results show that eATP synthase generates extracellular ATP to stimulate EV secretion by enhancing P2X7 receptor-triggered Ca2+ influx. Surprisingly, eATP synthase is also located on the surface of tumor-secreted EVs. The EVs-surface eATP synthase increases the uptake of tumor-secreted EVs in Jurkat T-cells via association with Fyn, a plasma membrane protein found in immune cells. The eATP synthase-coated EVs uptake subsequently represses the proliferation and cytokine secretion of Jurkat T-cells. This study clarifies the role of eATP synthase on EV secretion and its influence on immune cells.


Assuntos
Vesículas Extracelulares , Neoplasias , Vesículas Extracelulares/metabolismo , Transporte Biológico , Trifosfato de Adenosina/metabolismo , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA