Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Exp Ther Med ; 27(4): 126, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38414784

RESUMO

Acetyl-CoA carboxylase 2 plays a crucial role in regulating mitochondrial fatty acid oxidation in cardiomyocytes. Lithium, a monovalent cation known for its cardioprotective potential, has been investigated for its influence on mitochondrial bioenergetics. The present study explored whether lithium modulated acetyl-CoA carboxylase 2 and mitochondrial fatty acid metabolism in cardiomyocytes and the potential therapeutic applications of lithium in alleviating metabolic stress. Mitochondrial bioenergetic function, fatty acid oxidation, reactive oxygen species production, membrane potential and the expression of proteins involved in fatty acid metabolism in H9c2 cardiomyocytes treated with LiCl for 48 h was measured by using a Seahorse extracellular flux analyzer, fluorescence microscopy and western blotting. Small interfering RNA against glucose transporter type 4 was transfected into H9c2 cardiomyocytes for 48 h to induce metabolic stress mimicking insulin resistance. The results revealed that LiCl at a concentration of 0.3 mM (but not at a concentration of 0.1 or 1.0 mM) upregulated the expression of phosphorylated (p-)glycogen synthase kinase-3 beta and downregulated the expression of p-acetyl-CoA carboxylase 2 but did not affect the expression of adenosine monophosphate-activated protein kinase or calcineurin. Cotreatment with TWS119 (8 µM) and LiCl (0.3 mM) downregulated p-acetyl-CoA carboxylase 2 expression to a similar extent as did treatment with TWS119 (8 µM) alone. Moreover, LiCl (0.3 mM) inhibited mitochondrial fatty acid oxidation, improved coupling efficiency and the cellular respiratory control ratio, hindered reactive oxygen species production and proton leakage and restored mitochondrial membrane potential in glucose transporter type 4 knockdown-H9c2 cardiomyocytes. These findings suggested that low therapeutic levels of lithium can downregulate p-acetyl-CoA carboxylase 2, thus reducing mitochondrial fatty acid oxidation and oxidative stress in cardiomyocytes.

2.
Transl Res ; 268: 1-12, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38244770

RESUMO

Interleukin (IL)-33, a cytokine involved in immune responses, can activate its receptor, suppression of tumorigenicity 2 (ST2), is elevated during atrial fibrillation (AF). However, the role of IL-33/ST2 signaling in atrial arrhythmia is unclear. This study explored the pathological effects of the IL-33/ST2 axis on atrial remodeling and arrhythmogenesis. Patch clamping, confocal microscopy, and Western blotting were used to analyze the electrical characteristics of and protein activity in atrial myocytes (HL-1) treated with recombinant IL-33 protein and/or ST2-neutralizing antibodies for 48 hrs. Telemetric electrocardiographic recordings, Masson's trichrome staining, and immunohistochemistry staining of the atrium were performed in mice receiving tail vein injections with nonspecific immunoglobulin (control), IL-33, and IL-33 combined with anti-ST2 antibody for 2 weeks. IL-33-treated HL-1 cells had a reduced action potential duration, lower L-type Ca2+ current, greater sarcoplasmic reticulum (SR) Ca2+ content, increased Na+/Ca2+ exchanger (NCX) current, elevation of K+ currents, and increased intracellular calcium transient. IL-33-treated HL-1 myocytes had greater activation of the calcium-calmodulin-dependent protein kinase II (CaMKII)/ryanodine receptor 2 (RyR2) axis and nuclear factor kappa B (NF-κB) / NLR family pyrin domain containing 3 (NLRP3) signaling than did control cells. IL-33 treated cells also had greater expression of Nav1.5, Kv1.5, NCX, and NLRP3 than did control cells. Pretreatment with neutralizing anti-ST2 antibody attenuated IL-33-mediated activation of CaMKII/RyR2 and NF-κB/NLRP3 signaling. IL-33-injected mice had more atrial ectopic beats and increased AF episodes, greater atrial fibrosis, and elevation of NF-κB/NLRP3 signaling than did controls or mice treated with IL-33 combined with anti-ST2 antibody. Thus, IL-33 recombinant protein treatment promotes atrial remodeling through ST2 signaling. Blocking the IL-33/ST2 axis might be an innovative therapeutic approach for patients with atrial arrhythmia and elevated serum IL-33.


Assuntos
Remodelamento Atrial , Interleucina-33 , Miócitos Cardíacos , Animais , Masculino , Camundongos , Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/metabolismo , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/metabolismo , Remodelamento Atrial/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Átrios do Coração/fisiopatologia , Átrios do Coração/metabolismo , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/patologia , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais
3.
Fundam Clin Pharmacol ; 38(2): 262-275, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37664898

RESUMO

BACKGROUND: Metabolic stress predisposes to ventricular arrhythmias and sudden cardiac death. Right ventricular outflow tract (RVOT) is the common origin of ventricular arrhythmias. Adenosine monophosphate-regulated protein kinase (AMPK) activation is an important compensatory mechanism for cardiac remodeling during metabolic stress. OBJECTIVES: The purpose of this study was to access whether AMPK inhibition would modulate RVOT electrophysiology, calcium (Ca2+ ) regulation, and RVOT arrhythmogenesis or not. METHODS: Conventional microelectrodes were used to record electrical activity before and after compound C (10 µM, an AMPK inhibitor) in isoproterenol (1 µM)-treated rabbit RVOT tissue preparations under electrical pacing. Whole-cell patch-clamp and confocal microscopic examinations were performed in baseline and compound C-treated rabbit RVOT cardiomyocytes to investigate ionic currents and intracellular Ca2+ transients in isolated rabbit RVOT cardiomyocytes. RESULTS: Compound C decreased RVOT contractility, and reversed isoproterenol increased RVOT contractility. Compound C decreased the incidence, rate, and duration of isoproterenol-induced RVOT burst firing under rapid pacing. Compared to baseline, compound C-treated RVOT cardiomyocytes had a longer action potential duration, smaller intracellular Ca2+ transients, late sodium (Na+ ), peak L-type Ca2+ current density, Na+ -Ca2+ exchanger, transient outward potassium (K+ ) current, and rapid and slow delayed rectifier K+ currents. CONCLUSION: AMPK inhibition modulates RVOT electrophysiological characteristics and Ca2+ homeostasis, contributing to lower RVOT arrhythmogenic activity. Accordingly, AMPK inhibition might potentially reduce ventricular tachyarrhythmias.


Assuntos
Proteínas Quinases Ativadas por AMP , Cálcio , Animais , Coelhos , Cálcio/metabolismo , Monofosfato de Adenosina , Isoproterenol/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Miócitos Cardíacos/metabolismo , Homeostase , Potenciais de Ação
4.
Cells ; 12(9)2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-37174622

RESUMO

Type 2 diabetes mellitus (T2DM) is a global burden, with an increasing number of people affected and increasing treatment costs. The advances in research and guidelines improve the management of blood glucose and related diseases, but T2DM and its complications are still a big challenge in clinical practice. T2DM is a metabolic disorder in which insulin signaling is impaired from reaching its effectors. Mitochondria are the "powerhouses" that not only generate the energy as adenosine triphosphate (ATP) using pyruvate supplied from glucose, free fatty acid (FFA), and amino acids (AA) but also regulate multiple cellular processes such as calcium homeostasis, redox balance, and apoptosis. Mitochondrial dysfunction leads to various diseases, including cardiovascular diseases, metabolic disorders, and cancer. The mitochondria are highly dynamic in adjusting their functions according to cellular conditions. The shape, morphology, distribution, and number of mitochondria reflect their function through various processes, collectively known as mitochondrial dynamics, including mitochondrial fusion, fission, biogenesis, transport, and mitophagy. These processes determine the overall mitochondrial health and vitality. More evidence supports the idea that dysregulated mitochondrial dynamics play essential roles in the pathophysiology of insulin resistance, obesity, and T2DM, as well as imbalanced mitochondrial dynamics found in T2DM. This review updates and discusses mitochondrial dynamics and the complex interactions between it and metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Dinâmica Mitocondrial , Mitocôndrias/metabolismo , Insulina/metabolismo
5.
J Dent Sci ; 18(2): 652-658, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37021220

RESUMO

Background/purpose: Oral submucous fibrosis (OSF) is a premalignant disorder that is associated with betel nut chewing. The purpose of the study was to establish the role of histone deacetylase (HDAC) 8, one of histone deacetylases, in the regulation of fibrotic conditions to provide a therapeutic potential for OSF. Materials and methods: First, we examined the expression of HDAC8 in fibrotic buccal mucosal fibroblasts (fBMFs) and OSF tissues. Markers of myofibroblasts and TGF-ß signaling were conducted in fBMFs with HDAC8 knockdown were examined. Furthermore, epithelial-mesenchymal transition (EMT) markers, collagen gel contraction and migration ability were also examined in fBMFs transfected with sh-HDAC8. HDAC8 inhibitor was used to analyze the collagen gel contraction and wound healing ability in fBMFs. Results: We observed the mRNA expression of HDAC8 was significantly increased in fBMFs. Compared to normal tissues, the protein level of HDAC8 was upregulated in OSF. Next, mRNA and protein expression of HDAC8 was significantly decreased, accompanying downregulation of α-SMA and COL1A1 in fBMFs infected with sh-HDAC8. To determine the critical role of HDAC8 in OSF fibrogenesis, results revealed that TGF-ß secretion and the expression of EMT transcription factor SNAIL and p-Smad were significantly decreased in HDAC8-knockdown fBMFs. We further demonstrated that collagen gel contraction and migration ability were significantly decreased in fBMFs transfected with sh-HDAC8. Last, results revealed that significantly reduced collagen gel contraction and wound healing ability in fBMFs with HDAC8 inhibitor treatment. Conclusion: We concluded that downregulation of HDAC8 alleviated the activities of myofibroblasts and TGF-ß/Smad signaling pathway in OSF.

6.
Cells ; 12(6)2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36980218

RESUMO

BACKGROUND: COVID-19 has a major impact on cardiovascular diseases and may lead to myocarditis or cardiac failure. The clove-like spike (S) protein of SARS-CoV-2 facilitates its transmission and pathogenesis. Cardiac mitochondria produce energy for key heart functions. We hypothesized that S1 would directly impair the functions of cardiomyocyte mitochondria, thus causing cardiac dysfunction. METHODS: Through the Seahorse Mito Stress Test and real-time ATP rate assays, we explored the mitochondrial bioenergetics in human cardiomyocytes (AC16). The cells were treated without (control) or with S1 (1 nM) for 24, 48, and 72 h and we observed the mitochondrial morphology using transmission electron microscopy and confocal fluorescence microscopy. Western blotting, XRhod-1, and MitoSOX Red staining were performed to evaluate the expression of proteins related to energetic metabolism and relevant signaling cascades, mitochondrial Ca2+ levels, and ROS production. RESULTS: The 24 h S1 treatment increased ATP production and mitochondrial respiration by increasing the expression of fatty-acid-transporting regulators and inducing more negative mitochondrial membrane potential (Δψm). The 72 h S1 treatment decreased mitochondrial respiration rates and Δψm, but increased levels of reactive oxygen species (ROS), mCa2+, and intracellular Ca2+. Electron microscopy revealed increased mitochondrial fragmentation/fission in AC16 cells treated for 72 h. The effects of S1 on ATP production were completely blocked by neutralizing ACE2 but not CD147 antibodies, and were partly attenuated by Mitotempo (1 µM). CONCLUSION: S1 might impair mitochondrial function in human cardiomyocytes by altering Δψm, mCa2+ overload, ROS accumulation, and mitochondrial dynamics via ACE2.


Assuntos
COVID-19 , Miócitos Cardíacos , Ratos , Animais , Humanos , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ratos Sprague-Dawley , Enzima de Conversão de Angiotensina 2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Mitocôndrias Cardíacas/metabolismo , Trifosfato de Adenosina/metabolismo
7.
J Nutr Biochem ; 111: 109161, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184012

RESUMO

The ketogenic diet (KD) might improve cardiac function in diabetic cardiomyopathy, but the mechanisms remain unclear. This study investigated the effects of KD on myocardial fatty acid (FA), glucose, and ketone metabolism in diabetic cardiomyopathy. Echocardiograms, biochemistry, and micro-positron emission tomography were performed to evaluate cardiac function and glucose uptake in control rats and streptozotocin-induced diabetes mellitus (DM) rats with normal diet (ND) or KD for 6 weeks. Histopathology, adenosine triphosphate measurement, and Western blot were performed in the ventricular myocytes to analyze fibrosis, FA, ketone body, and glucose utilization. The ND-fed DM rats exhibited impaired left ventricular systolic function and increased chamber dilatation, whereas control and KD-fed DM rats did not. The KD reduced myocardial fibrosis and apoptosis in the DM rats. Myocardial glucose uptake in the micro-positron emission tomography was similar between ND-fed DM rats and KD-fed DM rats and was substantially lower than the control rats. Compared with the control rats,  ND-fed DM rats had increased phosphorylation of acetyl CoA carboxylase and higher expressions of CD-36, carnitine palmitoyltransferase-1ß, tumor necrosis factor-α, interleukin-1ß, interleukin6, PERK, and e-IF2α as well as more myocardial fibrosis and apoptosis (assessed by Bcl-2, BAX, and caspase-3 expression); these increases were attenuated in the KD-fed DM rats. Moreover, ND-fed DM rats had significantly lower myocardial adenosine triphosphate, BHB, and OXCT1 levels than the control and KD-fed DM rats. The KD may improve the condition of diabetic cardiomyopathy by suppressing FA metabolism, increasing ketone utilization, and decreasing endoplasmic reticulum stress and inflammation.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Dieta Cetogênica , Ratos , Animais , Estreptozocina/efeitos adversos , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos , Glucose/metabolismo , Corpos Cetônicos/efeitos adversos , Corpos Cetônicos/metabolismo , Fibrose , Trifosfato de Adenosina/metabolismo
8.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232308

RESUMO

Atrial arrhythmias are considered prominent phenomena in pulmonary arterial hypertension (PAH) resulting from atrial electrical and structural remodeling. Endothelin (ET)-1 levels correlate with PAH severity and are associated with atrial remodeling and arrhythmia. In this study, hemodynamic measurement, western blot analysis, and histopathology were performed in the control and monocrotaline (MCT, 60 mg/kg)-induced PAH rabbits. Conventional microelectrodes were used to simultaneously record the electrical activity in the isolated sinoatrial node (SAN) and right atrium (RA) tissue preparations before and after ET-1 (10 nM) or BQ-485 (an ET-A receptor antagonist, 100 nM) perfusion. MCT-treated rabbits showed an increased relative wall thickness in the pulmonary arterioles, mean cell width, cross-sectional area of RV myocytes, and higher right ventricular systolic pressure, which were deemed to have PAH. Compared to the control, the spontaneous beating rate of SAN-RA preparations was faster in the MCT-induced PAH group, which can be slowed down by ET-1. MCT-induced PAH rabbits had a higher incidence of sinoatrial conduction blocks, and ET-1 can induce atrial premature beats or short runs of intra-atrial reentrant tachycardia. BQ 485 administration can mitigate ET-1-induced RA arrhythmogenesis in MCT-induced PAH. The RA specimens from MCT-induced PAH rabbits had a smaller connexin 43 and larger ROCK1 and phosphorylated Akt than the control, and similar PKG and Akt to the control. In conclusion, ET-1 acts as a trigger factor to interact with the arrhythmogenic substrate to initiate and maintain atrial arrhythmias in PAH. ET-1/ET-A receptor/ROCK signaling may be a target for therapeutic interventions to treat PAH-induced atrial arrhythmias.


Assuntos
Monocrotalina , Hipertensão Arterial Pulmonar , Animais , Arritmias Cardíacas , Conexina 43/farmacologia , Modelos Animais de Doenças , Endotelina-1 , Hipertensão Pulmonar Primária Familiar/patologia , Monocrotalina/toxicidade , Proteínas Proto-Oncogênicas c-akt , Artéria Pulmonar/patologia , Coelhos
9.
Eur J Clin Invest ; 52(4): e13712, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34783022

RESUMO

BACKGROUND: Inhibition of histone deacetylases (HDACs) attenuates cardiac fibrosis. In this study, we evaluated whether the inhibition of class I HDACs can attenuate angiotensin II (ANG II)-induced fibrogenesis and mitochondrial malfunction through its effects on reactive oxygen species (ROS) and calcium dysregulation in human cardiac fibroblasts (CFs). METHODS: Seahorse XF24 extracellular flux analyser, fluorescence staining, Western blotting, HDAC activity assays and Transwell migration assay were used to study mitochondrial respiration, adenosine triphosphate (ATP) production, mitochondrial calcium uptake and ROS, HDAC expression and activity and fibroblast activity in CFs without (control) or with ANG II (100 nM) and/or MS-275 (HDAC class 1 inhibitor, 10 µM) for 24 h. RESULTS: ANG II increased HDAC activity without changing protein expression in CFs. Compared with controls, ANG II-treated CFs had greater migration activity, higher ATP production, maximal respiration and spare capacity with higher mitochondrial Ca2+ uptake and ROS generation, which was attenuated by the administration of MS-275. ANG II activated CFs by increasing mitochondrial calcium content and ATP production, which may be caused by increased HDAC activity. Inhibition of HDAC1 attenuated the effects of ANG II by reducing mitochondrial ROS generation and calcium overload. CONCLUSIONS: Modulating mitochondrial function by regulation of HDAC may be a novel strategy for controlling CF activity.


Assuntos
Angiotensina II/fisiologia , Movimento Celular/fisiologia , Fibroblastos/fisiologia , Histona Desacetilases/fisiologia , Mitocôndrias/fisiologia , Miocárdio/citologia , Angiotensina II/efeitos dos fármacos , Cálcio/metabolismo , Células Cultivadas , Inibidores de Histona Desacetilases/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
10.
Int J Mol Sci ; 22(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503985

RESUMO

Glucagon-like peptide 1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT2is) are antihyperglycemic agents with cardioprotective properties against diabetic cardiomyopathy (DCM). However, the distinctive mechanisms underlying GLP-1RAs and SGLT2is in DCM are not fully elucidated. The purpose of this study was to investigate the impacts of GLP1RAs and/or SGLT2is on myocardial energy metabolism, cardiac function, and apoptosis signaling in DCM. Biochemistry and echocardiograms were studied before and after treatment with empagliflozin (10 mg/kg/day, oral gavage), and/or liraglutide (200 µg/kg every 12 h, subcutaneously) for 4 weeks in male Wistar rats with streptozotocin (65 mg/kg intraperitoneally)-induced diabetes. Cardiac fibrosis, apoptosis, and protein expression of metabolic and inflammatory signaling molecules were evaluated by histopathology and Western blotting in ventricular cardiomyocytes of different groups. Empagliflozin and liraglutide normalized myocardial dysfunction in diabetic rats. Upregulation of phosphorylated-acetyl coenzyme A carboxylase, carnitine palmitoyltransferase 1ß, cluster of differentiation 36, and peroxisome proliferator-activated receptor-gamma coactivator, and downregulation of glucose transporter 4, the ratio of phosphorylated adenosine monophosphate-activated protein kinase α2 to adenosine monophosphate-activated protein kinase α2, and the ratio of phosphorylated protein kinase B to protein kinase B in diabetic cardiomyocytes were restored by treatment with empagliflozin or liraglutide. Nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3, interleukin-1ß, tumor necrosis factor-α, and cleaved caspase-1 were significantly downregulated in empagliflozin-treated and liraglutide-treated diabetic rats. Both empagliflozin-treated and liraglutide-treated diabetic rats exhibited attenuated myocardial fibrosis and apoptosis. Empagliflozin modulated fatty acid and glucose metabolism, while liraglutide regulated inflammation and apoptosis in DCM. The better effects of combined treatment with GLP-1RAs and SGLT2is may lead to a potential strategy targeting DCM.


Assuntos
Compostos Benzidrílicos/farmacologia , Cardiomiopatias Diabéticas/metabolismo , Metabolismo Energético/efeitos dos fármacos , Glucosídeos/farmacologia , Liraglutida/farmacologia , Miocárdio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Citocinas/biossíntese , Cardiomiopatias Diabéticas/diagnóstico , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Modelos Animais de Doenças , Ecocardiografia , Ácidos Graxos/metabolismo , Fibrose , Glucose/metabolismo , Testes de Função Cardíaca , Hipoglicemiantes/farmacologia , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Ratos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
11.
Acta Physiol (Oxf) ; 231(4): e13604, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33332716

RESUMO

AIM: To investigate the role of zinc finger homeobox 3 gene (ZFHX3) in tachypacing-induced mitochondrial dysfunction and explore its molecular mechanisms and potential as a therapeutic target in atrial fibrillation (AF). METHODS: Through a bioluminescent assay, a patch clamp, confocal fluorescence and fluorescence microscopy, microplate enzyme activity assays and Western blotting, we studied ATP and ADP production, mitochondrial electron transfer chain complex activities, ATP-sensitive potassium channels (IKATP ), mitochondrial oxidative stress, Ca2+ content, and protein expression in control and ZFHX3 knockdown (KD) HL-1 cells subjected to 1 and 5-Hz pacing for 24 hours. RESULTS: Compared with 1-Hz pacing, 5-Hz pacing increased ATP and ADP production, IKATP , phosphorylated adenosine monophosphate-activated protein kinase and inositol 1,4,5-triphosphate (IP3 ) receptor (IP3 R) protein expression. Tachypacing induced mitochondrial oxidative stress and Ca2+ overload in both cell types. Furthermore, under 1- and 5-Hz pacing, ZFHX3 KD cells showed higher IKATP , ATP and ADP production, mitochondrial oxidative stress and Ca2+ content than control cells. Under 5-Hz pacing, 2-aminoethoxydiphenyl borate (2-APB; 3 µmol/L, an IP3 R inhibitor) and MitoTEMPO (10 µmol/L, a mitochondria-targeted antioxidant) reduced ADP and increased ATP production in both cell types; however, only 2-APB significantly reduced mitochondrial Ca2+ overload in control cells. Under 5-Hz pacing, mitochondrial oxidative stress was significantly reduced by both MitoTEMPO and 2-APB and only by 2-APB in control and ZFHX3 KD cells respectively. CONCLUSION: ZFHX3 KD cells modulate mitochondrial adaptations to tachypacing in HL-1 cardiomyocytes through Ca2+ overload, oxidative stress and metabolic disorder. Targeting IP3 R signalling or oxidative stress could reduce AF.


Assuntos
Fibrilação Atrial , Miócitos Cardíacos , Fibrilação Atrial/metabolismo , Cálcio/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo
12.
Eur J Clin Invest ; 51(5): e13470, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33296074

RESUMO

BACKGROUND: Calcific aortic valve disease is associated with ageing and high mortality. However, no effective pharmacological treatment has been developed. Vascular endothelial growth factor (VEGF) and its receptor are overexpressed in the calcified aortic valve tissue. However, the role of VEGF in calcific aortic valve disease pathogenesis and its underlying mechanisms remain unclear. MATERIALS AND METHODS: Runt-related transcription factor 2 expression and calcium-related signalling were investigated in porcine valvular interstitial cells with or without human VEGF-A recombinant protein (VEGF165 , 1-100 ng/mL) treatment and/or calmodulin-dependent kinase II (CaMKII) inhibitor (KN93, 10 µmol/L) and inositol triphosphate receptor inhibitor (2-aminoethyldiphenyl borate, 30 µmol/L) for 5 days. RESULTS: VEGF165 -treated cells had higher Runt-related transcription factor 2 expression and CaMKII/ adenosine 3',5'-monophosphate response element-binding protein (CREB) signalling activation than did control cells. KN93 reduced Runt-related transcription factor 2 expression and CREB phosphorylation in VEGF165 -treated cells. The 2-aminoethyldiphenyl borate also reduced Runt-related transcription factor 2 expression in VICs treated with VEGF165 . CONCLUSION: VEGF upregulated Runt-related transcription factor 2 expression in VICs by activating the IP3R/CaMKII/CREB signalling pathway.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/citologia , Valva Aórtica/patologia , Calcinose/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Valva Aórtica/metabolismo , Benzilaminas/farmacologia , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Subunidade alfa 1 de Fator de Ligação ao Core/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Sulfonamidas/farmacologia , Suínos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/farmacologia
13.
Europace ; 22(7): 1132-1141, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32627831

RESUMO

AIMS: Klotho, a potential antiageing protein has remarkable cardiovascular effects, which is lower in the patients with chronic kidney disease (CKD). Chronic kidney disease increases the risk of atrial fibrillation, majorly triggered by pulmonary vein (PV) arrhythmogenesis. This study investigated whether klotho protein can modulate PV electrical activity and the underlying potential mechanisms. METHODS AND RESULTS: A conventional microelectrode and whole-cell patch clamp were used to investigate the action potentials and ionic currents in isolated rabbit PV tissue preparations and single cardiomyocytes before and after klotho administration. Phosphoinositide 3-kinase (PI3K)/Akt signalling was studied using western blotting. Klotho significantly reduced PV spontaneous beating rates in PV tissue preparations at 1.0 and 3.0 ng/mL (but not at 0.1 and 0.3 ng/mL). In the presence of the Akt inhibitor (10 µM), klotho (1.0 and 3.0 ng/mL) did not change PV electrical activities. Klotho (1.0 ng/mL) significantly decreased the late sodium current (INa-Late) and L-type calcium current (ICa-L), similar to the Akt inhibitor (10 µM). Western blots demonstrated that klotho (1.0 ng/mL)-treated PV cardiomyocytes had less phosphorylation of Akt (Ser473) compared with klotho-untreated cardiomyocytes. Compared with control PVs, klotho at relatively lower concentrations (0.1 and 0.3 ng/mL) significantly reduced beating rates and decreased the amplitudes of delay afterdepolarizations in CKD PVs. CONCLUSION: Klotho modulated PV electrical activity by inhibiting PI3K/Akt signalling, which may provide a novel insight into CKD-induced arrhythmogenesis.


Assuntos
Fibrilação Atrial , Veias Pulmonares , Potenciais de Ação , Animais , Cálcio , Glucuronidase , Homeostase , Humanos , Proteínas Klotho , Miócitos Cardíacos , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Coelhos
14.
Oral Oncol ; 106: 104706, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32330684

RESUMO

OBJECTIVES: In current guidelines, early tongue cancer status post partial glossectomy without adverse risk features do not require adjuvant treatment. However, many of these patients developed recurrence with neck metastases soon. The objectives of this study were to investigate the potential risk factors in early tongue cancer that prophylactic management of neck may be considered. MATERIALS AND METHODS: From January 2010 to September 2015, this retrospective study enrolled 102 patients with T1-2N0 primary oral tongue squamous cell carcinoma according to AJCC 8th edition Cancer Staging System. All patients underwent partial glossectomy with or without selective neck dissection, and did not receive any adjuvant treatment. Patients with any adverse risk features were excluded. We have studied the 4-year cancer-specific survival and neck recurrence rate, and analyzed the relevance between pathologic tumor classification, tumor depth, tumor histologic grade, and measured surgical margin of primary tumor. RESULTS: The median follow up duration was 47 months (range 6-93 months) with the median recurrence interval was 13 months. Histologic grade ≥2 of primary tumor was significantly associated with increased risk of neck recurrence and disease-specific mortality in both univariate and multivariate analysis. CONCLUSION: Histologic grade ≥2 was an adverse prognostic factor of neck recurrence and was significantly associated with poor cancer-specific survival in T1-2N0 early oral tongue cancer patients. Therefore, prophylactic neck dissection or prophylactic adjuvant radiation therapy to neck may be considered in T1-2N0 early oral tongue cancer with histologic grade ≥2 of primary tumor.


Assuntos
Neoplasias da Língua/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Recidiva Local de Neoplasia , Estudos Retrospectivos , Fatores de Risco , Resultado do Tratamento
15.
Lab Invest ; 100(2): 285-296, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31748680

RESUMO

Vascular endothelial growth factor (VEGF), a pivotal activator of angiogenesis and calcium (Ca2+) signaling in endothelial cells, was shown to increase collagen production in atrial fibroblasts. In this study, we evaluated whether VEGF may regulate Ca2+ homeostasis in atrial fibroblasts and contribute to its profibrogenesis. Migration, and proliferation analyses, patch-clamp assay, Ca2+ fluorescence imaging, and western blotting were performed using VEGF-treated (300 pg/mL or 1000 pg/mL) human atrial fibroblasts with or without coadministration of Ethylene glycol tetra-acetic acid (EGTA, 1 mmol/L), or KN93 (a Ca2+/calmodulin-dependent protein kinase II [CaMKII] inhibitor, 10 µmol/L). VEGF (1000 pg/mL) increased migration, myofibroblast differentiation, pro-collagen type I, pro-collagen type III production, and phosphorylated VEGF receptor 1 expression of fibroblasts. VEGF (1000 pg/mL) increased the nonselective cation current (INSC) of transient receptor potential (TRP) channels and potassium current of intermediate-conductance Ca2+-activated K+ (KCa3.1) channels thereby upregulating Ca2+ entry. VEGF upregulated phosphorylated ERK expression. An ERK inhibitor (PD98059, 50 µmol/L) attenuated VEGF-activated INSC of TRP channels. The presence of EGTA attenuated the profibrotic effects of VEGF on pro-collagen type I, pro-collagen type III production, myofibroblast differentiation, and migratory capabilities of fibroblasts. VEGF upregulated the expression of phosphorylated CaMKII in fibroblasts, which was attenuated by EGTA. In addition, KN93 reduced VEGF-increased pro-collagen type I, pro-collagen type III production, myofibroblast differentiation, and the migratory capabilities of fibroblasts. In conclusion, we found that VEGF increases atrial fibroblast activity through CaMKII signaling by enhancing Ca2+ entry. Our findings provide benchside evidence leading to a potential novel strategy targeting atrial myopathy and arrhythmofibrosis.


Assuntos
Cálcio/metabolismo , Fibroblastos/metabolismo , Fibrose/metabolismo , Átrios do Coração/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Sinalização do Cálcio/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Homeostase/fisiologia , Humanos
16.
J Cell Mol Med ; 23(11): 7641-7650, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31496037

RESUMO

Tumour necrosis factor (TNF)-α induces cardiac metabolic disorder and mitochondrial dysfunction. Hydrogen sulphide (H2 S) contains anti-inflammatory and biological effects in cardiomyocytes. This study investigated whether H2 S modulates TNF-α-dysregulated mitochondrial function and metabolism in cardiomyocytes. HL-1 cells were incubated with TNF-α (25 ng/mL) with or without sodium hydrosulphide (NaHS, 0.1 mmol/L) for 24 hours. Cardiac peroxisome proliferator-activated receptor (PPAR) isoforms, pro-inflammatory cytokines, receptor for advanced glycation end products (RAGE) and fatty acid metabolism were evaluated through Western blotting. The mitochondrial oxygen consumption rate and adenosine triphosphate (ATP) production were investigated using Seahorse XF24 extracellular flux analyzer and bioluminescence assay. Fluorescence intensity using 2', 7'-dichlorodihydrofluorescein diacetate was used to evaluate mitochondrial oxidative stress. NaHS attenuated the impaired basal and maximal respiration, ATP production and ATP synthesis and enhanced mitochondrial oxidative stress in TNF-α-treated HL-1 cells. TNF-α-treated HL-1 cells exhibited lower expression of PPAR-α, PPAR-δ, phosphorylated 5' adenosine monophosphate-activated protein kinase-α2, phosphorylated acetyl CoA carboxylase, carnitine palmitoyltransferase-1, PPAR-γ coactivator 1-α and diacylglycerol acyltransferase 1 protein, but higher expression of PPAR-γ, interleukin-6 and RAGE protein than control or combined NaHS and TNF-α-treated HL-1 cells. NaHS modulates the effects of TNF-α on mitochondria and the cardiometabolic system, suggesting its therapeutic potential for inflammation-induced cardiac dysfunction.


Assuntos
Mitocôndrias/metabolismo , Mitocôndrias/patologia , Sulfetos/farmacologia , Fator de Necrose Tumoral alfa/toxicidade , Trifosfato de Adenosina/biossíntese , Animais , Linhagem Celular , Citocinas/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Mediadores da Inflamação/metabolismo , Insulina/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Acta Physiol (Oxf) ; 227(3): e13322, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31152485

RESUMO

AIM: Atrial fibrillation (AF) is an important cause of morbidity and mortality in the modern world. Loss-of-function mutation in the zinc finger homeobox 3 gene (ZFHX3) is associated with increased risk of AF. MicroRNAs (miRNAs) participate in arrhythmogenesis, and thus miRNA modulators may be applicable as therapeutic modalities for AF. However, the altered miRNA profiles after ZFHX3 knockdown (KD) remain unclear. This study aimed to analyse the changes of miRNA expression in loss-of-function of ZFHX3 and the effect of miRNA modulation on atrial arrhythmias in this model. METHODS: We performed small RNA deep sequencing on ZFHX3-KD and control HL-1 mouse atrial myocytes. The effect of miRNAs on ZFHX3-dependent atrial arrhythmia was evaluated through in vitro and in vivo assays in mice. RESULTS: Among the differentially expressed miRNAs, 11 were down-regulated and 6 were up-regulated after ZFHX3 KD. Quantitative real-time PCR analysis confirmed that after ZFHX3 KD, miR-133a and miR-133b were significantly down-regulated, whereas miR-184 was the most significantly up-regulated. DIANA-miRPath analysis suggested that miR-133a/b down-regulation increases the targeted signalling of miR-133 (ie, adrenergic, Wnt/calcium and fibroblast growth factor receptor 1 signalling), which could contribute to pathological remodelling of cardiomyocytes. These results were confirmed through Western blotting. After transfection of miR-133a/b mimics in ZFHX3-KD cells, miR-133a/b levels increased, accompanied by the inhibition of their target signalling. Treatment with miR-133a/b mimics diminished ZFHX3 KD-induced atrial ectopy in mice. CONCLUSION: ZFHX3-KD promotes distinct miRNA expressional changes in atrial myocytes. MiR-133a/b mimics may reverse signalling of ZFHX3 KD-mediated cardiac remodelling and atrial arrhythmia.


Assuntos
Remodelamento Atrial/fisiologia , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Arritmias Cardíacas , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Regulação para Baixo , Técnicas de Silenciamento de Genes , Átrios do Coração/citologia , Proteínas de Homeodomínio/genética , Camundongos , MicroRNAs/genética , Retículo Sarcoplasmático , Regulação para Cima
18.
Oncol Lett ; 16(4): 4773-4781, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30214610

RESUMO

Integrin signaling may modulate several different functions involved in cell migration, invasion, proliferation and motility, and is a potential candidate biomarker for oral cancer. In the present study, a total of four integrin genes were evaluated as potential biomarkers of oral squamous cell carcinoma (OSCC). Gene expression was determined using the reverse transcription-quantitative polymerase chain reaction in 55 OSCC and 55 matched normal oral tissues. The performance of individual and combined biomarkers was analyzed by receiver operating characteristic (ROC) analysis based on the relative mRNA expression (OSCC vs. matched oral tissue from the tumor-free margin), which was calculated using the ΔΔCq value (ΔCq of OSCC-ΔCq of oral tissue from the tumor-free margin of the same patient). In the individual ROC analysis, the areas under the ROC curve (AUCs) of relative mRNA expression (ΔΔCq) of integrin subunit α3 (ITGA3), integrin subunit α5 (ITGA5), integrin subunit ß1 (ITGB1) and integrin subunit ß6 (ITGB6) in all tumor locations were 0.724, 0.698, 0.640 and 0.657, respectively. For locations 2 (tongue/mouth part) and 3 (edentulous ridge), their individual AUC values were 0.840, 0.765, 0.725 and 0.763, respectively. In the cumulative ROC analysis, ITGA3, ITGA5 and ITGB1 genes exhibited the highest combined AUC values (0.809 and 0.871 for all locations and locations 2 and 3 combined, respectively) compared with other biomarker combinations. In conclusion, the results of the present study identified that higher mRNA expressions of ITGA3, ITGA5, ITGB1 and ITGB6 genes are suitable for OSCC diagnosis biomarkers. Cumulative ROC analysis indicated an improved overall performance compared with the best individual integrin biomarker of OSCC.

19.
Epigenetics ; 13(4): 376-385, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29613828

RESUMO

Histone deacetylases (HDACs) play vital roles in the pathophysiology of heart failure, which is associated with mitochondrial dysfunction. Tumor necrosis factor-α (TNF-α) contributes to the genesis of heart failure and impairs mitochondria. This study evaluated the role of HDACs in TNF-α-induced mitochondrial dysfunction and investigated their therapeutic potential and underlying mechanisms. We measured mitochondrial oxygen consumption rate (OCR) and ATP production using Seahorse XF24 extracellular flux analyzer and bioluminescent assay in control and TNF-α (10 ng/ml, 24 h)-treated HL-1 cells with or without HDAC inhibition. TNF-α increased Class I and II (but not Class IIa) HDAC activities (assessed by Luminescent) with enhanced expressions of Class I (HDAC1, HDAC2, HDAC3, and HDAC8) but not Class IIb HDAC (HDAC6 and HDAC10) proteins in HL-1 cells. TNF-α induced mitochondrial dysfunction with impaired basal, ATP-linked, and maximal respiration, decreased cellular ATP synthesis, and increased mitochondrial superoxide production (measured by MitoSOX red fluorescence), which were rescued by inhibiting HDACs with MPT0E014 (1 µM, a Class I and IIb inhibitor), or MS-275 (1 µM, a Class I inhibitor). MPT0E014 reduced TNF-α-decreased complex I and II enzyme (but not III or IV) activities (by enzyme activity microplate assays). Our results suggest that Class I HDAC actions contribute to TNF-α-induced mitochondrial dysfunction in cardiomyocytes with altered complex I and II enzyme regulation. HDAC inhibition improves dysfunctional mitochondrial bioenergetics with attenuation of TNF-α-induced oxidative stress, suggesting the therapeutic potential of HDAC inhibition in cardiac dysfunction.


Assuntos
Histona Desacetilases/metabolismo , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/citologia , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima , Trifosfato de Adenosina/metabolismo , Animais , Benzamidas/farmacologia , Linhagem Celular , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Camundongos , Mitocôndrias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Piridinas/farmacologia , Regulação para Cima/efeitos dos fármacos
20.
Arch Oral Biol ; 87: 131-142, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29291435

RESUMO

OBJECTIVE: This study investigated SPRY2 expression in human oral potentially malignant disorders (OPMDs) and oral squamous cell carcinomas (OSCCs). METHODS: 75 OSCCs, 23 OPMDs with malignant transformation (MT), 17 OPMDs without MT, and eight normal oral mucosa (NOM) tissues were used for immunohistochemical staining; three OSCC tissues with normal tissue counterparts were used for western blotting. Three human oral cancer cell lines (OCCLs), an oral precancer cell line (DOK), and a NOM primary culture (NOMPC) were used for western blotting; OCCLs and NOMPC were employed for real-time quantitative reverse transcription-polymerase chain reaction. OCCLs were evaluated in terms of proliferation, migration, invasion and BRAF V600E point mutation assays. RESULTS: Significantly increased SPRY2 protein expression was observed in OSCCs as compared with NOM, and SPRY2 expression also differed between OSCC patients with and without lymph-node metastasis. SPRY2 protein and mRNA expressions were significantly enhanced as compared with NOMPC. Increased phospho-ERK expression was observed in OCCLs as compared with NOMPC. Significant decreases in the proliferation rate, degrees of migration and invasion were noted in OCCLs with SPRY2 siRNA transfection as compared with those without SPRY2 siRNA transfection. No BRAF V600E point mutation was observed for OCCLs as compared with NOMPC. A significantly increased SPRY2 protein level was noted in OPMDs with MT as compared to those without MT, and was also found in OPMDs with MT in comparison with NOM, as well as in DOK in comparison with NOMPC. CONCLUSIONS: Our results indicated that SPRY2 overexpression is associated with human oral squamous-cell carcinogenesis.


Assuntos
Carcinogênese/metabolismo , Carcinoma de Células Escamosas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias Bucais/metabolismo , Idoso , Western Blotting , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Técnicas Imunoenzimáticas , Metástase Linfática , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Mutação Puntual , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA