Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 436(5): 168312, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37827329

RESUMO

Photoactivated adenylate cyclases (PACs) are light-activated enzymes that combine a BLUF (blue-light using flavin) domain and an adenylate cyclase domain that are able to increase the levels of the important second messenger cAMP (cyclic adenosine monophosphate) upon blue-light excitation. The light-induced changes in the BLUF domain are transduced to the adenylate cyclase domain via a mechanism that has not yet been established. One critical residue in the photoactivation mechanism of BLUF domains, present in the vicinity of the flavin is the glutamine amino acid close to the N5 of the flavin. The role of this residue has been investigated extensively both experimentally and theoretically. However, its role in the activity of the photoactivated adenylate cyclase, OaPAC has never been addressed. In this work, we applied ultrafast transient visible and infrared spectroscopies to study the photochemistry of the Q48E OaPAC mutant. This mutation altered the primary electron transfer process and switched the enzyme into a permanent 'on' state, able to increase the cAMP levels under dark conditions compared to the cAMP levels of the dark-adapted state of the wild-type OaPAC. Differential scanning calorimetry measurements point to a less compact structure for the Q48E OaPAC mutant. The ensemble of these findings provide insight into the important elements in PACs and how their fine tuning may help in the design of optogenetic devices.


Assuntos
Adenilil Ciclases , Proteínas de Bactérias , Glutamina , Oscillatoria , Adenilil Ciclases/química , Adenilil Ciclases/genética , Adenilil Ciclases/efeitos da radiação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/efeitos da radiação , Flavinas/química , Flavinas/efeitos da radiação , Luz , Mutação , Glutamina/genética , Domínios Proteicos/efeitos dos fármacos , Transporte de Elétrons , Ativação Enzimática/efeitos da radiação , Oscillatoria/enzimologia
2.
Biophys J ; 121(11): 2135-2151, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35488435

RESUMO

Heme has been shown to have a crucial role in the signal transduction mechanism of the facultative photoheterotrophic bacterium Rhodobacter sphaeroides. It interacts with the transcriptional regulatory complex AppA/PpsR, in which AppA and PpsR function as the antirepressor and repressor, respectively, of photosynthesis gene expression. The mechanism, however, of this interaction remains incompletely understood. In this study, we combined electron paramagnetic resonance (EPR) spectroscopy and Förster resonance energy transfer (FRET) to demonstrate the ligation of heme in PpsR with a proposed cysteine residue. We show that heme binding in AppA affects the fluorescent properties of the dark-adapted state of the protein, suggesting a less constrained flavin environment compared with the absence of heme and the light-adapted state. We performed ultrafast transient absorption measurements in order to reveal potential differences in the dynamic processes in the full-length AppA and its heme-binding domain alone. Comparison of the CO-binding dynamics demonstrates a more open heme pocket in the holo-protein, qualitatively similar to what has been observed in the CO sensor RcoM-2, and suggests a communication path between the blue-light-using flavin (BLUF) and sensing containing heme instead of cobalamin (SCHIC) domains of AppA. We have also examined quantitatively the affinity of PpsR to bind to individual DNA fragments of the puc promoter using fluorescence anisotropy assays. We conclude that oligomerization of PpsR is initially triggered by binding of one of the two DNA fragments and observe a ∼10-fold increase in the dissociation constant Kd for DNA binding upon heme binding to PpsR. Our study provides significant new insight at the molecular level on the regulatory role of heme that modulates the complex transcriptional regulation in R. sphaeroides and supports the two levels of heme signaling, via its binding to AppA and PpsR and via the sensing of gases like oxygen.


Assuntos
Regulação Bacteriana da Expressão Gênica , Rhodobacter sphaeroides , Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos , Flavinas/genética , Flavinas/metabolismo , Flavoproteínas , Heme/metabolismo , Proteínas Repressoras/metabolismo , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA