Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(2)2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38241019

RESUMO

Exportin receptors are concentrated in the nucleus to transport essential cargoes out of it. A mislocalization of exportins to the cytoplasm is linked to disease. Hence, it is important to understand how their containment within the nucleus is regulated. Here, we have studied the nuclear efflux of exportin2 (cellular apoptosis susceptibility protein or CAS) that delivers karyopherinα (Kapα or importinα), the cargo adaptor for karyopherinß1 (Kapß1 or importinß1), to the cytoplasm in a Ran guanosine triphosphate (RanGTP)-mediated manner. We show that the N-terminus of CAS attenuates the interaction of RanGTPase activating protein 1 (RanGAP1) with RanGTP to slow GTP hydrolysis, which suppresses CAS nuclear exit at nuclear pore complexes (NPCs). Strikingly, a single phosphomimetic mutation (T18D) at the CAS N-terminus is sufficient to abolish its nuclear retention and coincides with metastatic cellular behavior. Furthermore, downregulating Kapß1 disrupts CAS nuclear retention, which highlights the balance between their respective functions that is essential for maintaining the Kapα transport cycle. Therefore, NPCs play a functional role in selectively partitioning exportins in the cell nucleus.


Assuntos
Núcleo Celular , Proteína de Suscetibilidade a Apoptose Celular , Carioferinas , Proteína ran de Ligação ao GTP , Transporte Ativo do Núcleo Celular/fisiologia , Transporte Biológico , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Carioferinas/metabolismo , Poro Nuclear/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Humanos , Proteína de Suscetibilidade a Apoptose Celular/genética , Proteína de Suscetibilidade a Apoptose Celular/metabolismo
2.
Biomater Sci ; 10(15): 4309-4323, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35771211

RESUMO

The design of non-viral vectors that efficiently deliver genetic materials into cells, in particular to the nucleus, remains a major challenge in gene therapy and vaccine development. To tackle the problems associated with cellular uptake and nuclear targeting, here we introduce a delivery platform based on the self-assembly of an amphiphilic peptide carrying an N-terminal KRKR sequence that functions as a nuclear localization signal (NLS). By means of a single-step self-assembly process, the amphiphilic peptides afford the generation of NLS-functionalized multicompartment micellar nanostructures that can embed various oligonucleotides between their individual compartments. Detailed physicochemical, cellular and ultrastructural analyses demonstrated that integrating an NLS in the hydrophilic domain of the peptide along with tuning its hydrophobic domain led to self-assembled DNA-loaded multicompartment micelles (MCMs) with enhanced cellular uptake and nuclear translocation. We showed that the nuclear targeting ensued via the NLS interaction with the nuclear transport receptors of the karyopherin family. Importantly, we observed that the treatment of MCF-7 cells with NLS-MCMs loaded with anti-BCL2 antisense oligonucleotides resulted in up to 86% knockdown of BCL2, an inhibitor of apoptosis that is overexpressed in more than half of all human cancers. We envision that this platform can be used to efficiently entrap and deliver diverse genetic payloads to the nucleus and find applications in basic research and biomedicine.


Assuntos
Sinais de Localização Nuclear , Oligonucleotídeos , Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/metabolismo , Humanos , Micelas , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Oligonucleotídeos/metabolismo , Peptídeos/química
3.
Nat Nanotechnol ; 11(8): 719-23, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27136131

RESUMO

Nuclear pore complexes (NPCs) are biological nanomachines that mediate the bidirectional traffic of macromolecules between the cytoplasm and nucleus in eukaryotic cells. This process involves numerous intrinsically disordered, barrier-forming proteins known as phenylalanine-glycine nucleoporins (FG Nups) that are tethered inside each pore. The selective barrier mechanism has so far remained unresolved because the FG Nups have eluded direct structural analysis within NPCs. Here, high-speed atomic force microscopy is used to visualize the nanoscopic spatiotemporal dynamics of FG Nups inside Xenopus laevis oocyte NPCs at timescales of ∼100 ms. Our results show that the cytoplasmic orifice is circumscribed by highly flexible, dynamically fluctuating FG Nups that rapidly elongate and retract, consistent with the diffusive motion of tethered polypeptide chains. On this basis, intermingling FG Nups exhibit transient entanglements in the central channel, but do not cohere into a tightly crosslinked meshwork. Therefore, the basic functional form of the NPC barrier is comprised of highly dynamic FG Nups that manifest as a central plug or transporter when averaged in space and time.


Assuntos
Microscopia de Força Atômica/métodos , Nanotecnologia/métodos , Poro Nuclear , Animais , Células Cultivadas , Feminino , Glicina/química , Glicina/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Oócitos/citologia , Fenilalanina/química , Fenilalanina/metabolismo , Análise Espaço-Temporal , Xenopus laevis
4.
Elife ; 52016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27198189

RESUMO

Nuclear Pore Complexes (NPCs) are key cellular transporter that control nucleocytoplasmic transport in eukaryotic cells, but its transport mechanism is still not understood. The centerpiece of NPC transport is the assembly of intrinsically disordered polypeptides, known as FG nucleoporins, lining its passageway. Their conformations and collective dynamics during transport are difficult to assess in vivo. In vitro investigations provide partially conflicting results, lending support to different models of transport, which invoke various conformational transitions of the FG nucleoporins induced by the cargo-carrying transport proteins. We show that the spatial organization of FG nucleoporin assemblies with the transport proteins can be understood within a first principles biophysical model with a minimal number of key physical variables, such as the average protein interaction strengths and spatial densities. These results address some of the outstanding controversies and suggest how molecularly divergent NPCs in different species can perform essentially the same function.


Assuntos
Fenômenos Biofísicos , Proteínas Intrinsicamente Desordenadas/química , Complexo de Proteínas Formadoras de Poros Nucleares/química , Animais , Modelos Teóricos , Conformação Proteica
5.
PLoS One ; 8(8): e71850, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977161

RESUMO

BACKGROUND: In eukaryotes the genetic material is enclosed by a continuous membrane system, the nuclear envelope (NE). Along the NE specific proteins assemble to form meshworks and mutations in these proteins have been described in a group of human diseases called laminopathies. Laminopathies include lipodystrophies, muscle and cardiac diseases as well as metabolic or progeroid syndromes. Most laminopathies are caused by mutations in the LMNAgene encoding lamins A/C. Together with Nesprins (Nuclear Envelope Spectrin Repeat Proteins) they are core components of the LINC complex (Linker of Nucleoskeleton and Cytoskeleton). The LINC complex connects the nucleoskeleton and the cytoskeleton and plays a role in the transfer of mechanically induced signals along the NE into the nucleus, and its components have been attributed functions in maintaining nuclear and cellular organization as well as signal transduction. RESULTS: Here we narrowed down the interaction sites between lamin A and Nesprin-2 to aa 403-425 in lamin A and aa 6146-6347 in Nesprin-2. Laminopathic mutations in and around the involved region of lamin A (R401C, G411D, G413C, V415I, R419C, L421P, R427G, Q432X) modulate the interaction with Nesprin-2 and this may contribute to the disease phenotype. The most notable mutation is the lamin A mutation Q432X that alters LINC complex protein assemblies and causes chromosomal and transcription factor rearrangements. CONCLUSION: Mutations in Nesprin-2 and lamin A are characterised by complex genotype phenotype relations. Our data show that each mutation in LMNAanalysed here has a distinct impact on the interaction among both proteins that substantially explains how distinct mutations in widely expressed genes lead to the formation of phenotypically different diseases.


Assuntos
Citoesqueleto/metabolismo , Lamina Tipo A/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Cromatina/metabolismo , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Humanos , Lamina Tipo A/química , Lamina Tipo A/genética , Camundongos , Proteínas dos Microfilamentos/química , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/química , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico
6.
Chemistry ; 17(29): 8156-64, 2011 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-21626581

RESUMO

Adenosine (Ado) can accept three protons, at N1, N3, and N7, to give H(3) (Ado)(3+) , and thus has three macro acidity constants. Unfortunately, these constants do not reflect the real basicity of the N sites due to internal repulsions, for example, between (N1)H(+) and (N7)H(+). However, these macroconstants are still needed for the evaluations and the first two are taken from our own earlier work, that is, pK(H)(H(3))((Ado)) = -4.02 and pK(H)(H(2))((Ado)) = -1.53; the third one was re-measured as pK(H)(H)((Ado)) = 3.64 ± 0.02 (25 °C; I=0.5 M, NaNO(3)), because it is the main basis for evaluating the intrinsic basicities of N7 and N3. Previously, contradicting results had been published for the micro acidity constant of the (N7)H(+) site; this constant has now been determined in an unequivocal manner, and that of the (N3)H(+) site was obtained for the first time. The micro acidity constants, which describe the release of a proton from an (N)H(+) site under conditions for which the other nitrogen atoms are free and do not carry a proton, decrease in the order pk(N7-N1)(N7(Ado)N1·H)) = 3.63 ± 0.02 > pk(N7-N1)(H·N7(Ado)N1) = 2.15 ± 0.15 > pk(N3-N1,N7)(H·N3(Ado)N1,N7) =1.5 ± 0.3, reflecting the decreasing basicity of the various nitrogen atoms, that is, N1>N7>N3. Application of the above-mentioned microconstants allows one to calculate the percentages (formation degrees) of the tautomers formed for monoprotonated adenosine, H(Ado)(+) , in aqueous solution; the results are 96.1, 3.2, and 0.7% for N7(Ado)N1·H(+), (+)H·N7(Ado)N1, and (+)H·N3(Ado)N1,N7, respectively. These results are in excellent agreement with theoretical DFT calculations. Evidently, H(Ado)(+) exists to the largest part as N7(Ado)N1·H(+) having the proton located at N1; the two other tautomers are minority species, but they still form. These results are not only meaningful for adenosine itself, but are also of relevance for nucleic acids and adenine nucleotides, as they help to understand their metal ion-binding properties; these aspects are briefly discussed.


Assuntos
Adenosina/química , Concentração de Íons de Hidrogênio , Isomerismo , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA