Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Vet Immunol Immunopathol ; 269: 110727, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330886

RESUMO

Dexamethasone (dex) is a potent glucocorticoid used to treat a variety of diseases. It is widely used in veterinary medicine in many species; for instance, in dogs, it can be used for emergent cases of anaphylaxis or trauma, management of immune-mediated hemolytic anemia or thrombocytopenia, certain cancers, allergic reactions, and topically for skin or eye inflammation. Dex is not without its side effects, especially when administered systemically, which might compromise compliance and effective treatment. Thus, adjunct therapies have been suggested to allow for decreased dex dosing and reduction in side effects while maintaining immunosuppressive efficacy. The goal of this study was to evaluate the potential for cannabinoids to serve as adjunct therapies for dex. Immune function was assessed in canine peripheral blood mononuclear cells (PBMCs) after treatment with dex with and without cannabidiol (CBD) and/or Δ9-tetrahydrocannabinol (THC). Dex suppressed IFN-γ protein secretion in a concentration-dependent manner and this suppression by low concentrations of dex was enhanced in the presence of CBD, THC, or the combination of CBD and THC. Similar effects were found with INFG and TNFA mRNA expression. These findings provide a rationale for using CBD or THC in vivo to reduce dex dosing and side effects.


Assuntos
Canabidiol , Canabinoides , Cães , Animais , Canabinoides/uso terapêutico , Dronabinol/uso terapêutico , Leucócitos Mononucleares , Canabidiol/efeitos adversos , Dexametasona/uso terapêutico
2.
Cell Immunol ; 397-398: 104812, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38245915

RESUMO

Cannabidiol (CBD) is a phytocannabinoid derived from Cannabis sativa that exerts anti-inflammatory mechanisms. CBD is being examined for its putative effects on the neuroinflammatory disease, multiple sclerosis (MS). One of the major immune mediators that propagates MS and its mouse model experimental autoimmune encephalomyelitis (EAE) are macrophages. Macrophages can polarize into an inflammatory phenotype (M1) or an anti-inflammatory phenotype (M2a). Therefore, elucidating the impact on macrophage polarization with CBD pre-treatment is necessary to understand its anti-inflammatory mechanisms. To study this effect, murine macrophages (RAW 264.7) were pre-treated with CBD (10 µM) or vehicle (ethanol 0.1 %) and were either left untreated (naive; cell media only), or stimulated under M1 (IFN-γ + lipopolysaccharide, LPS) or M2a (IL-4) conditions for 24 hr. Cells were analyzed for macrophage polarization markers, and supernatants were analyzed for cytokines and chemokines. Immunofluorescence staining was performed on M1-polarized cells for the metalloprotease, tumor necrosis factor-α-converting enzyme (TACE), as this enzyme is responsible for the secretion of TNF-α. Overall results showed that CBD decreased several markers associated with the M1 phenotype while exhibiting less effects on the M2a phenotype. Significantly, under M1 conditions, CBD increased the percentage of intracellular and surface TNF-α but decreased secreted TNF-α. This phenomenon might be mediated by TACE as staining showed that CBD sequestered TACE intracellularly. CBD also prevented RelA nuclear translocation. These results suggest that CBD may exert its anti-inflammatory effects by reducing M1 polarization and decreasing TNF-α secretion via inappropriate localization of TACE and RelA.


Assuntos
Canabidiol , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Canabidiol/farmacologia , Proteína ADAM17 , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
3.
Environ Health Perspect ; 130(10): 105001, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36201310

RESUMO

BACKGROUND: Key characteristics (KCs), properties of agents or exposures that confer potential hazard, have been developed for carcinogens and other toxicant classes. KCs have been used in the systematic assessment of hazards and to identify assay and data gaps that limit screening and risk assessment. Many of the mechanisms through which pharmaceuticals and occupational or environmental agents modulate immune function are well recognized. Thus KCs could be identified for immunoactive substances and applied to improve hazard assessment of immunodulatory agents. OBJECTIVES: The goal was to generate a consensus-based synthesis of scientific evidence describing the KCs of agents known to cause immunotoxicity and potential applications, such as assays to measure the KCs. METHODS: A committee of 18 experts with diverse specialties identified 10 KCs of immunotoxic agents, namely, 1) covalently binds to proteins to form novel antigens, 2) affects antigen processing and presentation, 3) alters immune cell signaling, 4) alters immune cell proliferation, 5) modifies cellular differentiation, 6) alters immune cell-cell communication, 7) alters effector function of specific cell types, 8) alters immune cell trafficking, 9) alters cell death processes, and 10) breaks down immune tolerance. The group considered how these KCs could influence immune processes and contribute to hypersensitivity, inappropriate enhancement, immunosuppression, or autoimmunity. DISCUSSION: KCs can be used to improve efforts to identify agents that cause immunotoxicity via one or more mechanisms, to develop better testing and biomarker approaches to evaluate immunotoxicity, and to enable a more comprehensive and mechanistic understanding of adverse effects of exposures on the immune system. https://doi.org/10.1289/EHP10800.


Assuntos
Substâncias Perigosas , Sistema Imunitário , Carcinógenos , Consenso , Substâncias Perigosas/toxicidade , Preparações Farmacêuticas
4.
Toxicol Appl Pharmacol ; 454: 116259, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36179859

RESUMO

Part of the mechanism by which 2,3,7.8-tetrachlorodibenzo-p-dioxin (TCDD) suppresses immune function involves induction of regulatory T cells and suppression of effector T cells. The goal of this project was to examine whether TCDD's suppression of effector T cells was due in part to inducing B regulatory cells (Bregs). TCDD's potential to increase the percentage and/or function of CD24+CD38+ B cells was assessed in response to lipopolysaccharide (LPS) + interleukin (IL)-4 in vitro and in a mild model of experimental autoimmune encephalomyelitis (EAE) in vivo. In vitro, TCDD did not consistently increase the percentage of CD19+CD24+CD38+ cells using splenocytes, purified B cells or bone marrow (BM) cells. However, TCDD increased IL-10 in all three culture preparations, and TCDD increased the percentage of CD5+CD24+CD38+ cells producing IL-10. In EAE, TCDD did not affect the percentage of the CD24+CD38+ cell population in CD19, B220 or CD5 B cells in splenocytes (SPLC), lymph nodes (LN) nor BM cells at end-stage disease. On the other hand, TCDD increased the CD19+CD24+CD38+ percentage in the spinal cord (SC) in EAE. Moreover, TCDD-treated B cells isolated from spleens or TCDD-treated BM cells in EAE mice modestly reduced the ability of naïve effector T cells to express interferon (IFN)-γ and tumor necrosis factor (TNF)-α. Together these data show that TCDD can induce regulatory functions in B cells, although it was not obvious simply by examining the expression of regulatory markers but by assessing function by cytokine production or mixed lymphocyte responses.


Assuntos
Encefalomielite Autoimune Experimental , Dibenzodioxinas Policloradas , Animais , Linfócitos B , Interferons , Interleucina-10 , Lipopolissacarídeos , Camundongos , Dibenzodioxinas Policloradas/toxicidade , Linfócitos T , Fator de Necrose Tumoral alfa/metabolismo
5.
Front Pharmacol ; 13: 852029, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418857

RESUMO

Cannabis (marijuana) is the most commonly used illicit product in the world and is the second most smoked plant after tobacco. There has been a rapid increase in the number of countries legalizing cannabis for both recreational and medicinal purposes. Smoking cannabis in the form of a joint is the most common mode of cannabis consumption. Combustion of cannabis smoke generates many of the same chemicals as tobacco smoke. Although the impact of tobacco smoke on respiratory health is well-known, the consequence of cannabis smoke on the respiratory system and, in particular, the inflammatory response is unclear. Besides the combustion products present in cannabis smoke, cannabis also contains cannabinoids including Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). These compounds are hydrophobic and not present in aqueous solutions. In order to understand the impact of cannabis smoke on pathological mechanisms associated with adverse respiratory outcomes, the development of in vitro surrogates of cannabis smoke exposure is needed. Therefore, we developed a standardized protocol for the generation of cannabis smoke extract (CaSE) to investigate its effect on cellular mechanisms in vitro. First, we determined the concentration of Δ9-THC, one of the major cannabinoids, by ELISA and found that addition of methanol to the cell culture media during generation of the aqueous smoke extract significantly increased the amount of Δ9-THC. We also observed by LC-MS/MS that CaSE preparation with methanol contains CBD. Using a functional assay in cells for CB1 receptors, the major target of cannabinoids, we found that this CaSE contains Δ9-THC which activates CB1 receptors. Finally, this standardized preparation of CaSE induces an inflammatory response in human lung fibroblasts. This study provides an optimized protocol for aqueous CaSE preparation containing biologically active cannabinoids that can be used for in vitro experimentation of cannabis smoke and its potential impact on various indices of pulmonary health.

6.
Toxicology ; 448: 152646, 2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33253778

RESUMO

Previously we demonstrated that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suppressed experimental autoimmune encephalomyelitis (EAE), a model to study multiple sclerosis (MS), through induction of regulatory T cells (Tregs) and suppression of effector T cell function in the spleen. Since B cells and specifically regulatory B cells (Bregs) have been shown to be so critical in the pathology associated with EAE and MS, we wanted to determine whether TCDD could also induce Bregs. We specifically hypothesized that a Fas ligand (FasL)+ Breg population would be induced by TCDD in EAE thereby triggering apoptosis in Fas-expressing effector T cells as one mechanism to account for inhibition of T cell function by TCDD. TCDD (0.1-2.5 µg/kg/day administered orally for 12 days) modestly increased the percentage of FasL + B cells in the spleen and spinal cord in TCDD-treated EAE mice. However, we did not detect significant increases in percentages of FasL + B cells using TCDD in vitro in mouse splenocytes or human peripheral blood mononuclear cells (PBMCs). Part of the modest effect by TCDD was likely related to the localized expression of FasL; for instance, in the spleen, FasL was more highly expressed by IgMhiIgDlo marginal zone (MZ) B cells, but IgMloIgDhi follicular (FO) B cells were more responsive to TCDD. Consistent with our observation of modest upregulation of FasL, we also observed modest changes in mitochondrial membrane potential in T cells co-cultured with isolated total B cells or IgM-depleted (i.e., FO-enriched) B cells from TCDD-treated EAE mice. These data suggest that while small microenvironments of apoptosis might be occurring in T cells in response to TCDD-treated B cells, it is not a major mechanism by which T cell function is compromised by TCDD in EAE. TCDD did robustly suppress IgG production systemically and in spleen and spinal cord B cells at end stage disease. Thus, these studies show that TCDD's primary effect on B cells in EAE is compromised IgG production but not FasL + Breg induction.


Assuntos
Linfócitos B/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/prevenção & controle , Proteína Ligante Fas/biossíntese , Imunoglobulina G/metabolismo , Dibenzodioxinas Policloradas/uso terapêutico , Animais , Linfócitos B/efeitos dos fármacos , Células Cultivadas , Poluentes Ambientais/farmacologia , Poluentes Ambientais/uso terapêutico , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dibenzodioxinas Policloradas/farmacologia
7.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825651

RESUMO

The use of electronic nicotine delivery systems (ENDS), also known as electronic-cigarettes (e-cigs), has raised serious public health concerns, especially in light of the 2019 outbreak of e-cig or vaping product use-associated acute lung injury (EVALI). While these cases have mostly been linked to ENDS that contain vitamin E acetate, there is limited research that has focused on the chronic pulmonary effects of the delivery vehicles (i.e., without nicotine and flavoring). Thus, we investigated lung function and immune responses in a mouse model following exposure to the nearly ubiquitous e-cig delivery vehicles, vegetable glycerin (VG) and propylene glycol (PG), used with a specific 70%/30% ratio, with or without vanilla flavoring. We hypothesized that mice exposed sub-acutely to these e-cig aerosols would exhibit lung inflammation and altered lung function. Adult female C57BL/6 mice (n = 11-12 per group) were exposed to filtered air, 70%/30% VG/PG, or 70%/30% VG/PG with a French vanilla flavoring for 2 h a day for 6 weeks. Prior to sacrifice, lung function was assessed. At sacrifice, broncho-alveolar lavage fluid and lung tissue were collected for lipid mediator analysis, flow cytometry, histopathology, and gene expression analyses. Exposures to VG/PG + vanilla e-cig aerosol increased lung tidal and minute volumes and tissue damping. Immunophenotyping of lung immune cells revealed an increased number of dendritic cells, CD4+ T cells, and CD19+ B cells in the VG/PG-exposed group compared to air, irrespective of the presence of vanilla flavoring. Quantification of bioactive lung lipids demonstrated a >3-fold increase of 2-arachidonoylglycerol (2-AG), an anti-inflammatory mediator, and a 2-fold increase of 12-hydroxyeicosatetraenoic acid (12-HETE), another inflammatory mediator, following VG/PG exposure, with or without vanilla flavoring. This suggests that e-cig aerosol vehicles may affect immunoregulatory molecules. We also found that the two e-cig aerosols dysregulated the expression of lung genes. Ingenuity Pathway Analysis revealed that the gene networks that are dysregulated by the VG/PG e-cig aerosol are associated with metabolism of cellular proteins and lipids. Overall, our findings demonstrate that VG and PG, the main constituents of e-liquid formulations, when aerosolized through an e-cig device, are not harmless to the lungs, since they disrupt immune homeostasis.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/toxicidade , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Animais , Modelos Animais de Doenças , Feminino , Expressão Gênica/efeitos dos fármacos , Glicerol/administração & dosagem , Glicerol/toxicidade , Imunoglobulinas/metabolismo , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Pneumonia/fisiopatologia , Propilenoglicol/administração & dosagem , Propilenoglicol/toxicidade , Testes de Função Respiratória
8.
Toxicology ; 396-397: 54-67, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29427786

RESUMO

Bisphenol A (BPA) is commonly used in the manufacturing of a wide range of consumer products, including polycarbonate plastics, epoxy resin that lines beverage and food cans, and some dental sealants. Consumption of food and beverages containing BPA represents the primary route of human BPA exposure, which is virtually ubiquitous. An increasing number of studies have evaluated the effects of BPA on immune responses in laboratory animals that have reported a variety of effects some of which have been contradictory. To address the divergent findings surrounding BPA exposure, a comprehensive chronic treatment study of BPA was conducted in Sprague-Dawley rats, termed the Consortium Linking Academic and Regulatory Insights on Toxicity of BPA (CLARITY-BPA). As a participant in the CLARITY-BPA project, our studies evaluated the effects of BPA on a broad range of immune function endpoints using spleen cells isolated from BPA or vehicle treated rats. This comprehensive assessment included measurements of lymphoproliferation in response to mitogenic stimuli, immunoglobulin production by B cells, and cellular activation of T cells, NK cells, monocytes, granulocytes, macrophages and dendritic cells. In total, 630 different measurements in BPA treated rats were performed of which 35 measurements were statistically different from vehicle controls. The most substantive alteration associated with BPA treatment was the augmentation of lymphoproliferation in response to pokeweed mitogen stimulations in 1 year old male rats, which was also observed in the reference estrogen ethinyl estradiol treated groups. With the exception of the aforementioned, the statistically significant changes associated with BPA treatment were mostly sporadic and not dose-dependent with only one out of five BPA dose groups showing a statistical difference. In addition, the observed BPA-associated alterations were mostly moderate in magnitude and showed no persistent trend over the one-year time period. Based on these findings, we conclude that the observed BPA-mediated changes observed in this study are unlikely to alter immune competence in adult rats.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Leucócitos/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Fenóis/toxicidade , Baço/citologia , Animais , Linfócitos B/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Imunoglobulina M/biossíntese , Células Matadoras Naturais/efeitos dos fármacos , Contagem de Leucócitos , Contagem de Linfócitos , Masculino , Células Mieloides/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Baço/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos
9.
Prostaglandins Other Lipid Mediat ; 121(Pt B): 199-206, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26403860

RESUMO

Inflammation is an important part of the innate immune response and is involved in the healing of many disease processes; however, chronic inflammation is a harmful component of many diseases. The regulatory mechanisms of inflammation are incompletely understood. One possible regulatory mechanism is the endocannabinoid system. Endocannabinoids such as 2-arachidonoylglycerol (2-AG) and anandamide (AEA) are generally anti-inflammatory via engagement of the cannabinoid receptor 2 (CB2) on innate cells; therefore, preventing the degradation of endocannabinoids by specific serine hydrolases such as fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), and carboxylesterases (CES) might decrease inflammation. We hypothesized that the activities of these catabolic enzymes would decrease with a subsequent increase in 2-AG and AEA in a model of inflammation. Mice were injected with lipopolysaccharide (LPS) for 6 or 24h, and inflammation was confirmed by an increase in interleukin-6 (il6) and il17 gene expression. Activity-based protein profiling (ABPP) of serine hydrolases showed no significant difference in various serine hydrolase activities in brain or liver, whereas a modest decrease in Ces activity in spleen after LPS administration was noted. 2-AG hydrolase activity in the spleen was also decreased at 6h post LPS, which was corroborated by LPS treatment of splenocytes ex vivo. ABPP-MudPIT proteomic analysis suggested that the decreased 2-AG hydrolysis in spleen was due to a reduction in Ces2g activity. These studies suggest that the endocannabinoid system could be activated via suppression of a 2-AG catabolic enzyme in response to inflammatory stimuli as one mechanism to limit inflammation.


Assuntos
Ácidos Araquidônicos/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Endocanabinoides/metabolismo , Endotoxemia/metabolismo , Repressão Enzimática , Glicerídeos/metabolismo , Monoacilglicerol Lipases/metabolismo , Baço/metabolismo , Animais , Ácidos Araquidônicos/agonistas , Carboxilesterase , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/genética , Células Cultivadas , Endocanabinoides/agonistas , Endotoxemia/induzido quimicamente , Endotoxemia/imunologia , Endotoxemia/patologia , Repressão Enzimática/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Glicerídeos/agonistas , Hidrólise/efeitos dos fármacos , Interleucina-17/antagonistas & inibidores , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-6/antagonistas & inibidores , Interleucina-6/genética , Interleucina-6/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Lipopolissacarídeos/toxicidade , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/genética , Especificidade de Órgãos , Distribuição Aleatória , Baço/efeitos dos fármacos , Baço/imunologia , Baço/patologia , Especificidade por Substrato
10.
Toxicol Sci ; 145(2): 214-32, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26008184

RESUMO

Immunotoxicology assessments have historically focused on the effects that xenobiotics exhibit directly on immune cells. These studies are invaluable as they identify immune cell targets and help characterize mechanisms and/or adverse outcome pathways of xenobiotics within the immune system. However, leukocytes can receive environmental cues by cell-cell contact or via released mediators from cells of organs outside of the immune system. These organs include, but are not limited to, the mucosal areas such as the lung and the gut, the liver, and the central nervous system. Homeostatic perturbation in these organs induced directly by toxicants can initiate and alter the outcome of local and systemic immunity. This review will highlight some of the identified nonimmune influences on immune homeostasis and provide summaries of how immunotoxic mechanisms of selected xenobiotics involve nonimmune cells or mediators. Thus, this review will identify data gaps and provide possible alternative mechanisms by which xenobiotics alter immune function that could be considered during immunotoxicology safety assessment.


Assuntos
Comunicação Celular/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Toxicologia/métodos , Xenobióticos/toxicidade , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Linfonodos/metabolismo , Medição de Risco , Transdução de Sinais/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Células Estromais/imunologia , Células Estromais/metabolismo , Timo/efeitos dos fármacos , Timo/imunologia , Timo/metabolismo
11.
Toxicol Appl Pharmacol ; 273(1): 209-18, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23999542

RESUMO

We have previously reported that Δ(9)-tetrahydrocannabinol (Δ(9)-THC), the main psychoactive cannabinoid in marijuana, suppresses CD40 ligand (CD40L) expression by activated mouse CD4(+) T cells. CD40L is involved in pathogenesis of many autoimmune and inflammatory diseases. In the present study, we investigated the molecular mechanism of Δ(9)-THC-mediated suppression of CD40L expression using peripheral blood human T cells. Pretreatment with Δ(9)-THC attenuated CD40L expression in human CD4(+) T cells activated by anti-CD3/CD28 at both the protein and mRNA level, as determined by flow cytometry and quantitative real-time PCR, respectively. Electrophoretic mobility shift assays revealed that Δ(9)-THC suppressed the DNA-binding activity of both NFAT and NFκB to their respective response elements within the CD40L promoter. An assessment of the effect of Δ(9)-THC on proximal T cell-receptor (TCR) signaling induced by anti-CD3/CD28 showed significant impairment in the rise of intracellular calcium, but no significant effect on the phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3ß. Collectively, these findings identify perturbation of the calcium-NFAT and NFκB signaling cascade as a key mechanistic event by which Δ(9)-THC suppresses human T cell function.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Ligante de CD40/genética , Dronabinol/farmacologia , NF-kappa B/genética , Fatores de Transcrição NFATC/genética , Animais , Antígenos CD28/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Ligante de CD40/antagonistas & inibidores , Ligante de CD40/metabolismo , Cálcio/análise , Canabinoides/química , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/antagonistas & inibidores , Fatores de Transcrição NFATC/metabolismo , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Proteína-Tirosina Quinase ZAP-70/genética , Proteína-Tirosina Quinase ZAP-70/metabolismo
12.
Toxicology ; 310: 84-91, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23727458

RESUMO

This study was undertaken to gain insights into the mechanism for Δ(9)-tetrahydrocannabinol (Δ(9)-THC)-mediated suppression of primary immunoglobulin M (IgM) responses in humans. An in vitro activation model, which employs cell surface-expressed CD40 ligand (CD40L) and recombinant cytokines (interleukin (IL)-2, -6, and -10), was used to differentiate human peripheral blood (HPB) naïve B cells into IgM secreting cells. Pretreatment with Δ(9)-THC significantly decreased the number of IgM secreting cells as determined by ELISPOT. The attenuation of IgM secretion by Δ(9)-THC involved, at least in part, the impairment of plasma cell differentiation as evidenced by suppression of immunoglobulin joining chain (IgJ) mRNA expression. The analysis at each of two different stages critically involved in plasma cell differentiation indicates that Δ(9)-THC impaired both the primary activation stage and proliferation of B cells. Interestingly, Δ(9)-THC selectively suppressed the surface expression of CD80, but not other measured B-cell activation markers (CD69, CD86, and ICAM1). Furthermore, pretreatment with Δ(9)-THC was accompanied by a robust decrease of STAT3 phosphorylation, whereas the phosphorylation of the p65 NFκB subunit was not affected. Collectively, these data provide new insights into the mechanisms for impaired B cell function by Δ(9)-THC.


Assuntos
Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Dronabinol/toxicidade , Imunoglobulina M/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Linfócitos B/metabolismo , Ligante de CD40/genética , Ligante de CD40/imunologia , Diferenciação Celular/imunologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Citocinas/imunologia , Citometria de Fluxo , Humanos , Imunoglobulina M/imunologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Plasmócitos/efeitos dos fármacos , Plasmócitos/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Transfecção
13.
J Immunotoxicol ; 10(3): 321-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23173851

RESUMO

Cannabidiol (CBD) is a plant-derived cannabinoid that has been predominantly characterized as anti-inflammatory. However, it is clear that immune effects of cannabinoids can vary with cannabinoid concentration, or type or magnitude of immune stimulus. The present studies demonstrate that oral administration of CBD enhanced lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice. The enhanced inflammatory cell infiltrate as observed in bronchoalveolar lavage fluid (BALF) was comprised mainly of neutrophils, with some monocytes. Concomitantly, CBD enhanced pro-inflammatory cytokine mRNA production, including tumor necrosis factor-α (Tnfa), interleukins (IL)-5 and -23 (Il6, Il23), and granulocyte colony stimulating factor (Gcsf). These results demonstrate that the CBD-mediated enhancement of LPS-induced pulmonary inflammation is mediated at the level of transcription of a variety of pro-inflammatory genes. The significance of these studies is that CBD is part of a therapeutic currently in use for spasticity and pain in multiple sclerosis patients, and therefore it is important to further understand mechanisms by which CBD alters immune function.


Assuntos
Canabidiol/efeitos adversos , Lipopolissacarídeos/efeitos adversos , Monócitos/imunologia , Neutrófilos/imunologia , Pneumonia/imunologia , Animais , Lavagem Broncoalveolar , Canabidiol/agonistas , Canabidiol/farmacologia , Citocinas/imunologia , Sinergismo Farmacológico , Feminino , Humanos , Lipopolissacarídeos/agonistas , Lipopolissacarídeos/farmacologia , Camundongos , Monócitos/patologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Neutrófilos/patologia , Pneumonia/induzido quimicamente , Pneumonia/patologia
14.
J Neuroimmune Pharmacol ; 7(4): 969-80, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22851303

RESUMO

The anti-inflammatory activity of cannabinoids has been widely demonstrated in experimental animal models and in humans. CD40-CD40-ligand (L) interactions are among the most crucial initiators of inflammation. This study investigated the effects of ∆(9)-THC on CD40L expression in mouse splenic T cells after activation with various stimuli. Time course studies demonstrated that peak surface expression of CD40L by CD4(+) T cells after anti-CD3/CD28 or phorbol ester plus calcium ionophore (PMA/Io) occurred 8 h post activation. Peak CD40L mRNA levels were observed at 2 h post PMA/Io treatment and at 4 h post anti-CD3/CD28 treatment. Pretreatment with ∆(9)-THC significantly impaired the upregulation of CD40L induced by anti-CD3/CD28 at both the protein and mRNA level. By contrast, ∆(9)-THC did not affect PMA/Io-induced surface CD40L expression on CD4(+) T cells. Additionally, ∆(9)-THC also attenuated anti-CD3/CD28-induced CD40L expression on CD4(+) T cells derived from CB1(-/-)/CB2(-/-) mice. We investigated whether the mechanism by which ∆(9)-THC suppressed CD40L expression involved putative cannabinoid activation of the glucocorticoid receptor (GR). Although activation of GR resulted in suppression of CD40L induction by anti-CD3/CD28, no interaction between ∆(9)-THC and GR was observed by a glucocorticoid response element (GRE) luciferase reporter assay in HEK293T cells. Collectively, these results suggest that ∆(9)-THC targets proximal T cell receptor-associated signaling in a cannabinoid receptor- and glucocorticoid receptor-independent manner. These findings identify suppression of CD40L expression as a novel part of the mechanism by which ∆(9)-THC exerts anti-inflammatory activity.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Antígenos CD40/biossíntese , Dronabinol/farmacologia , Alucinógenos/farmacologia , Animais , Feminino , Citometria de Fluxo , Células HEK293 , Humanos , Cinética , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Glucocorticoides/metabolismo , Baço/citologia , Baço/metabolismo , Transfecção
15.
J Pharmacol Exp Ther ; 342(3): 816-26, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22700433

RESUMO

2-Arachidonyl glycerol (2-AG) is an endogenous arachidonic acid derivative released on demand from membrane precursors. 2-AG-mediated suppression of interleukin (IL)-2 depends on cyclooxygenase 2 (COX-2) metabolism and peroxisome proliferator-activated receptor γ (PPARγ) activation. 15-Deoxy-Δ¹²,¹4-prostaglandin J2-glycerol ester (15d-PGJ2-G), a putative COX-2 metabolite of 2-AG, acts as a PPARγ ligand and produces IL-2 suppression in activated Jurkat T cells, in part, by decreasing nuclear factor of activated T cells (NFAT) transcriptional activity. The objective of the present studies was to investigate the mechanism by which 15d-PGJ2-G modulates NFAT activity to suppress IL-2. 15d-PGJ2-G treatment decreased phorbol 12-myristate 13-acetate (PMA)/calcium ionophore (I0)-induced NFAT DNA binding to the human IL-2 promoter and nuclear NFAT2 accumulation. It is noteworthy that 15d-PGJ2-G treatment increased active nuclear HDM2 (human homolog of the oncoprotein and E3 ubiquitin ligase murine double minute 2) expression, whereas there was no change in the expression of glycogen synthase kinase 3ß, both of which regulate NFAT. 15d-PGJ2-G and other PPARγ agonists, such as rosiglitazone and ciglitazone, decreased PMA/I0-mediated elevation in intracellular calcium concentration ([Ca²âº](i)) in activated Jurkat cells. We were surprised to find that the PPARγ antagonists 2-chloro-5-nitro-N-4-pyridinylbenzamide (T0070907) and 2-chloro-5-nitrobenzanilide (GW9662) also decreased the PMA/I0-mediated elevation in [Ca²âº](i) in activated T cells. In addition, the presence of T0070907 plus 15d-PGJ2-G produced an additive decrease in PMA/I0-mediated elevation of [Ca²âº](i), suggesting that the 15d-PGJ2-G effects on calcium might be either PPARγ-independent or -dependent on occupation of the PPARγ ligand binding domain. Collectively, our findings suggest that 15d-PGJ2-G increases active nuclear HDM2, which could lead to a decrease in NFAT2 and IL-2 suppression.


Assuntos
Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Glicerol/farmacologia , Fatores de Transcrição NFATC/metabolismo , PPAR gama/metabolismo , Prostaglandina D2/análogos & derivados , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Animais , Cálcio/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Interleucina-2/metabolismo , Células Jurkat , Ativação Linfocitária , Camundongos , Regiões Promotoras Genéticas , Prostaglandina D2/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo
16.
Toxicol Appl Pharmacol ; 255(3): 251-60, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21807014

RESUMO

Suppression of the primary antibody response is particularly sensitive to suppression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice; however, surprisingly little is known concerning the effects of TCDD on humoral immunity or B cell function in humans. Results from a limited number of previous studies, primarily employing in vitro activation models, suggested that human B cell effector function is suppressed by TCDD. The present study sought to extend these findings by investigating, in primary human B cells, the effects of TCDD on several critical stages leading to antibody secretion including activation and plasmacytic differentiation using an in vitro CD40 ligand activation model. These studies revealed important differences in the response of human and mouse B cells to TCDD, the most striking being altered expression of plasmacytic differentiation regulators, B lymphocyte-induced maturation protein 1 and paired box protein 5, in mouse but not human B cells. The activation of human B cells was profoundly impaired by TCDD, as evidenced by decreased expression of activation markers CD80, CD86, and CD69. The impaired activation correlated with decreased cell viability, which prevented the progression of human B cells toward plasmacytic differentiation. TCDD treatment also attenuated the early activation of mitogen-activated protein kinases (MAPK) and Akt signaling in human B cells. Collectively, the present study provided experimental evidence for novel mechanisms by which TCDD impairs the effector function of primary human B cells.


Assuntos
Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Ligante de CD40/fisiologia , Dibenzodioxinas Policloradas/toxicidade , Animais , Ligante de CD40/antagonistas & inibidores , Ligante de CD40/metabolismo , Células Cultivadas , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória
17.
Toxicol Sci ; 118(1): 86-97, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20702590

RESUMO

Past studies in rodent models identified the suppression of primary humoral immune responses as one of the most sensitive sequela associated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure. Yet, the sensitivity of humoral immunity to TCDD in humans represents an important toxicological data gap. Therefore, the objectives of this investigation were two-fold. The first was to assess the induction of known aryl hydrocarbon receptor (AHR)-responsive genes in primary human B cells as a measure of early biological responses to TCDD. The second was to evaluate the direct effect of TCDD on CD40 ligand-induced immunoglobulin M (IgM) secretion by human primary B cells. The effects of TCDD on induction of AHR-responsive genes and suppression of the IgM response were also compared with B cells from a TCDD-responsive mouse strain, C57BL/6. AHR-responsive genes in human B cells exhibited slower kinetics and reduced magnitude of induction by TCDD when compared with mouse B cells. Evaluation of B-cell function from 12 donors identified two general phenotypes; the majority of donors exhibited similar sensitivity to suppression by TCDD of the IgM response as mouse B cells, which was not attributable to decreased B-cell proliferation. In a minority of donors, no suppression of the IgM response by TCDD was observed. Although donor-to-donor variation in sensitivity to TCDD was observed, human B cells from the majority of donors evaluated showed impairment of effector function by TCDD. Collectively, data presented in this series of studies demonstrate that TCDD impairs the humoral immunity of humans by directly targeting B cells.


Assuntos
Linfócitos B/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Imunoglobulina M/metabolismo , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/genética , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Antígenos CD40/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Humanos , Imunomodulação/efeitos dos fármacos , Imunomodulação/genética , Imunomodulação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Hidrocarboneto Arílico/biossíntese , Fatores de Tempo
18.
Toxicol Pathol ; 38(3): 382-92, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20190202

RESUMO

The mechanisms by which cannabinoid receptors CB(1) and CB(2) modulate immune function are not fully elucidated. Critical tools for the determination of the role of both receptors in the immune system are CB(1)/CB(2) double null mice (CB(1)/CB(2) null), and previous studies have shown that CB(1)/CB(2) null mice exhibit exaggerated responses to various immunological stimuli. The objective of these studies was to determine the magnitude to which CB(1)/CB(2) null mice responded to the respiratory allergen ovalbumin (OVA) as compared with wild-type C57BL/6 mice. The authors determined that in the absence of adjuvant, both wild-type and CB(1)/CB(2) null mice mounted a marked response to intranasally instilled OVA as assessed by inflammatory cell infiltrate in the bronchoalveolar lavage fluid (BALF), eosinophilia, induction of mucous cell metaplasia, and IgE production. Many of the endpoints measured in response to OVA were similar in wild-type versus CB(1)/CB(2) null mice, with exceptions being modest reductions in OVA-induced IgE and attenuation of BALF neutrophilia in CB(1)/CB(2) null mice as compared with wild-type mice. These results suggest that T-cell responses are not universally exaggerated in CB(1)/CB(2) null mice.


Assuntos
Alérgenos/administração & dosagem , Hiper-Reatividade Brônquica/imunologia , Ovalbumina/administração & dosagem , Receptor CB1 de Canabinoide/imunologia , Receptor CB2 de Canabinoide/imunologia , Adjuvantes Imunológicos , Administração Intranasal , Alérgenos/imunologia , Animais , Hiper-Reatividade Brônquica/genética , Hiper-Reatividade Brônquica/metabolismo , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/biossíntese , Ensaio de Imunoadsorção Enzimática , Feminino , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/imunologia , RNA Mensageiro/análise , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
J Leukoc Biol ; 84(6): 1574-84, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18791168

RESUMO

The role of cannabinoid receptors, CB1 and CB2, in immune competence and modulation by Delta9-tetrahydrocannabinol (Delta9-THC) was investigated in CB1(-/-)/CB2(-/-) mice. Immunofluorescence analysis of splenic leukocytes showed no significant differences in the percentage of T cell subsets, B cells, or macrophages between wild-type and CB1(-/-)/CB2(-/-) mice. Lymphoproliferative control responses to PHA, phorbol ester plus ionomycin, or LPS and sensitivity to suppression by Delta9-THC showed no profound differences between the two genotypes, although some differences were observed in control baseline responses. Likewise, similar control responses and sensitivity to Delta9-THC were observed in mixed lymphocyte responses (MLR) and in IL-2 and IFN-gamma production in both genotypes. Conversely, humoral immune responses showed a markedly different profile of activity. Delta9-THC suppressed the in vivo T cell-dependent, anti-sheep RBC (anti-sRBC) IgM antibody-forming cell (AFC) response in wild-type but not in CB1(-/-)/CB2(-/-) mice, and the in vitro anti-sRBC IgM response in CB1(-/-)/CB2(-/-) splenocytes was too low to rigorously assess CB1/CB2 involvement in modulation by Delta9-THC. Conversely, comparable in vitro IgM AFC control responses to LPS and CD40 ligand (CD40L) activation were observed in the two genotypes. Interestingly, LPS-induced IgM responses were refractory to suppression by Delta9-THC, regardless of genotype, and CD40L-induced IgM responses were only suppressed by Delta9-THC in wild-type but not in CB1(-/-)/CB2(-/-) B cells. Collectively, we demonstrate differential involvement of CB1 and/or CB2 in immune modulation by Delta9-THC and in some control responses. Moreover, CB1/CB2 involvement was observed in humoral responses requiring CD40-initiated signaling for suppression by Delta9-THC.


Assuntos
Analgésicos não Narcóticos/farmacologia , Dronabinol/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Proliferação de Células , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Imunofluorescência , Imunoglobulina M , Leucócitos/citologia , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
20.
Cancer Immunol Immunother ; 55(6): 653-62, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16151808

RESUMO

Her-2/neu is a tumor-associated antigen that has been targeted with both antibodies and cytotoxic T lymphocytes (CTL). Despite the isolation of Her-2/neu-reactive CTL in vaccinated patients, their therapeutic use has been limited by the observation that they often do not robustly recognize Her-2/neu(+) tumors. We sought to determine the mechanism for this escape using Ag201P and Ag201M cells, which are murine osteosarcoma tumor lines that express a functional HLA-A2/K(b) molecule. We now demonstrate that Ag201P and Ag201M express low levels of murine Her-2/neu, and that Ag201M was modestly and inconsistently recognized by an HLA-A2-restricted, Her-2/neu-reactive human CTL clone. In order to determine whether inefficient antigen processing might account for the weak recognition, COS-A2 cells were transfected with a short Her-2/neu minigene coding for the immunodominant Her-2/neu:369 epitope that did not require antigen processing or a long Her-2/neu minigene that did require antigen processing. Her-2/neu-reactive CTL clones only recognized COS-A2 cells transfected with the short minigene, indicating that lack of proper antigen processing could be responsible for the poor recognition of target cells. To confirm these results, it was demonstrated that following treatment with interferon-gamma, both Ag201P and Ag201M robustly and consistently stimulated the CTL clones. Furthermore, CTL clone recognition was enhanced following interferon-gamma treatment using another murine tumor line that expressed low levels of Her-2/neu (B16-A2/K(b)). The enhanced recognition of Ag201P and Ag201M in the presence of interferon-gamma was not due to an upregulation of Her-2/neu protein expression. Collectively, these results suggest that inefficient antigen processing of Her-2/neu can contribute to the lack of tumor recognition by CTL. These results also suggest that even tissues that express low levels of Her-2/neu might become CTL targets under conditions in which antigen processing is enhanced.


Assuntos
Apresentação de Antígeno/imunologia , Interferon gama/imunologia , Neoplasias/imunologia , Receptor ErbB-2/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Western Blotting , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Imunofluorescência , Antígenos HLA/imunologia , Humanos , Camundongos , Receptor ErbB-2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA