Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Biomolecules ; 14(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38672501

RESUMO

The formation of bone outside the normal skeleton, or heterotopic ossification (HO), occurs through genetic and acquired mechanisms. Fibrodysplasia ossificans progressiva (FOP), the most devastating genetic condition of HO, is due to mutations in the ACVR1/ALK2 gene and is relentlessly progressive. Acquired HO is mostly precipitated by injury or orthopedic surgical procedures but can also be associated with certain conditions related to aging. Cellular senescence is a hallmark of aging and thought to be a tumor-suppressive mechanism with characteristic features such as irreversible growth arrest, apoptosis resistance, and an inflammatory senescence-associated secretory phenotype (SASP). Here, we review possible roles for cellular senescence in HO and how targeting senescent cells may provide new therapeutic approaches to both FOP and acquired forms of HO.


Assuntos
Senescência Celular , Miosite Ossificante , Ossificação Heterotópica , Humanos , Ossificação Heterotópica/genética , Ossificação Heterotópica/patologia , Ossificação Heterotópica/metabolismo , Senescência Celular/genética , Miosite Ossificante/genética , Miosite Ossificante/patologia , Miosite Ossificante/metabolismo , Animais , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo
2.
Biomolecules ; 13(9)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37759764

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare genetic disorder characterized by progressive disabling heterotopic ossification (HO) at extra-skeletal sites. Here, we developed adeno-associated virus (AAV)-based gene therapy that suppresses trauma-induced HO in FOP mice harboring a heterozygous allele of human ACVR1R206H (Acvr1R206H/+) while limiting the expression in non-skeletal organs such as the brain, heart, lung, liver, and kidney. AAV gene therapy carrying the combination of codon-optimized human ACVR1 (ACVR1opt) and artificial miRNAs targeting Activin A and its receptor ACVR1R206H ablated the aberrant activation of BMP-Smad1/5 signaling and the osteogenic differentiation of Acvr1R206H/+ skeletal progenitors. The local delivery of AAV gene therapy to HO-causing cells in the skeletal muscle resulted in a significant decrease in endochondral bone formation in Acvr1R206H/+ mice. These mice showed little to no expression in a major AAV-targeted organ, the liver, due to liver-abundant miR-122-mediated repression. Thus, AAV gene therapy is a promising therapeutic strategy to explore in suppressing HO in FOP.


Assuntos
Receptores de Ativinas Tipo I , Miosite Ossificante , Animais , Humanos , Camundongos , Receptores de Ativinas Tipo I/genética , Ativinas , Dependovirus/genética , Miosite Ossificante/genética , Miosite Ossificante/terapia , Osteogênese
3.
Biomolecules ; 13(7)2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37509165

RESUMO

Although structurally similar to type II counterparts, type I or activin receptor-like kinases (ALKs) are set apart by a metastable helix-loop-helix (HLH) element preceding the protein kinase domain that, according to a longstanding paradigm, serves passive albeit critical roles as an inhibitor-to-substrate-binding switch. A single recurrent mutation in the codon of the penultimate residue, directly adjacent the position of a constitutively activating substitution, causes milder activation of ACVR1/ALK2 leading to sporadic heterotopic bone deposition in patients presenting with fibrodysplasia ossificans progressiva, or FOP. To determine the protein structural-functional basis for the gain of function, R206H mutant, Q207D (aspartate-substituted caALK2) and HLH subdomain-truncated (208 Ntrunc) forms were compared to one another and the wild-type enzyme through in vitro kinase and protein-protein interaction analyses that were complemented by signaling read-out (p-Smad) in primary mouse embryonic fibroblasts and Drosophila S2 cells. Contrary to the paradigm, the HLH subdomain actively suppressed the phosphotransferase activity of the enzyme, even in the absence of FKBP12. Unexpectedly, perturbation of the HLH subdomain elevated kinase activity at a distance, i.e., allosterically, at the ATP-binding and polypeptide-interacting active site cleft. Accessibility to polypeptide substrate (BMP Smad C-terminal tails) due to allosterically altered conformations of type I active sites within heterohexameric cytoplasmic signaling complexes-assembled noncanonically by activin-type II receptors extracellularly-is hypothesized to produce a gain of function of the R206H mutant protein responsible for episodic heterotopic ossification in FOP.


Assuntos
Receptores de Ativinas Tipo I , Mutação com Ganho de Função , Animais , Camundongos , Receptores de Ativinas/genética , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Fibroblastos/metabolismo , Mutação , Peptídeos/genética
4.
Clin Orthop Relat Res ; 481(12): 2447-2458, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37156007

RESUMO

BACKGROUND: Fibrodysplasia ossificans progressiva (FOP) is an ultrarare genetic disorder with episodic and progressive heterotopic ossification. Tissue trauma is a major risk factor for flareups, heterotopic ossification (HO), and loss of mobility in patients with FOP. The International Clinical Council on FOP generally recommends avoiding surgery in patients with FOP unless the situation is life-threatening, because soft tissue injury can trigger an FOP flareup. Surprisingly little is known about flareups, HO formation, and loss of mobility after fractures of the normotopic (occurring in the normal place, distinct from heterotopic) skeleton when treated nonoperatively in patients with FOP. QUESTIONS/PURPOSES: (1) What proportion of fractures had radiographic evidence of union (defined as radiographic evidence of healing at 6 weeks) or nonunion (defined as the radiographic absence of a bridging callus at 3 years after the fracture)? (2) What proportion of patients had clinical symptoms of an FOP flareup because of the fracture (defined by increased pain or swelling at the fracture site within several days after closed immobilization)? (3) What proportion of patients with fractures had radiographic evidence of HO? (4) What proportion of patients lost movement after a fracture? METHODS: We retrospectively identified 36 patients with FOP from five continents who sustained 48 fractures of the normotopic skeleton from January 2001 to February 2021, who were treated nonoperatively, and who were followed for a minimum of 18 months after the fracture and for as long as 20 years, depending on when they sustained their fracture during the study period. Five patients (seven fractures) were excluded from the analysis to minimize cotreatment bias because these patients were enrolled in palovarotene clinical trials (NCT02190747 and NCT03312634) at the time of their fractures. Thus, we analyzed 31 patients (13 male, 18 female, median age 22 years, range 5 to 57 years) who sustained 41 fractures of the normotopic skeleton that were treated nonoperatively. Patients were analyzed at a median follow-up of 6 years (range 18 months to 20 years), and none was lost to follow-up. Clinical records for each patient were reviewed by the referring physician-author and the following data for each fracture were recorded: biological sex, ACVR1 gene pathogenic variant, age at the time of fracture, fracture mechanism, fracture location, initial treatment modality, prednisone use at the time of the fracture as indicated in the FOP Treatment Guidelines for flare prevention (2 mg/kg once daily for 4 days), patient-reported flareups (episodic inflammatory lesions of muscle and deep soft connective tissue characterized variably by swelling, escalating pain, stiffness, and immobility) after the fracture, follow-up radiographs of the fracture if available, HO formation (yes or no) as a result of the fracture determined at a minimum of 6 weeks after the fracture, and patient-reported loss of motion at least 6 months after and as long as 20 years after the fracture. Postfracture radiographs were available in 76% (31 of 41) of fractures in 25 patients and were independently reviewed by the referring physician-author and senior author for radiographic criteria of fracture healing and HO. RESULTS: Radiographic healing was noted in 97% (30 of 31) of fractures at 6 weeks after the incident fracture. Painless nonunion was noted in one patient who sustained a displaced patellar fracture and HO. In seven percent (three of 41) of fractures, patients reported increased pain or swelling at or near the fracture site within several days after fracture immobilization that likely indicated a site-specific FOP flareup. The same three patients reported a residual loss of motion 1 year after the fracture compared with their prefracture status. HO developed in 10% (three of 31) of the fractures for which follow-up radiographs were available. Patient-reported loss of motion occurred in 10% (four of 41) of fractures. Two of the four patients reported noticeable loss of motion and the other two patients reported that the joint was completely immobile (ankylosis). CONCLUSION: Most fractures treated nonoperatively in individuals with FOP healed with few flareups, little or no HO, and preservation of mobility, suggesting an uncoupling of fracture repair and HO, which are two inflammation-induced processes of endochondral ossification. These findings underscore the importance of considering nonoperative treatment for fractures in individuals with FOP. Physicians who treat fractures in patients with FOP should consult with a member of the International Clinical Council listed in the FOP Treatment Guidelines ( https://www.iccfop.org ). LEVEL OF EVIDENCE: Level IV, therapeutic study.


Assuntos
Fraturas Ósseas , Miosite Ossificante , Ossificação Heterotópica , Humanos , Masculino , Feminino , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Recém-Nascido , Miosite Ossificante/diagnóstico por imagem , Miosite Ossificante/genética , Miosite Ossificante/terapia , Estudos Retrospectivos , Ossificação Heterotópica/diagnóstico por imagem , Ossificação Heterotópica/etiologia , Ossificação Heterotópica/terapia , Dor/complicações
5.
Nat Commun ; 13(1): 6175, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36258013

RESUMO

Heterotopic ossification is the most disabling feature of fibrodysplasia ossificans progressiva, an ultra-rare genetic disorder for which there is currently no prevention or treatment. Most patients with this disease harbor a heterozygous activating mutation (c.617 G > A;p.R206H) in ACVR1. Here, we identify recombinant AAV9 as the most effective serotype for transduction of the major cells-of-origin of heterotopic ossification. We use AAV9 delivery for gene replacement by expression of codon-optimized human ACVR1, ACVR1R206H allele-specific silencing by AAV-compatible artificial miRNA and a combination of gene replacement and silencing. In mouse skeletal cells harboring a conditional knock-in allele of human mutant ACVR1 and in patient-derived induced pluripotent stem cells, AAV gene therapy ablated aberrant Activin A signaling and chondrogenic and osteogenic differentiation. In Acvr1(R206H) knock-in mice treated locally in early adulthood or systemically at birth, trauma-induced endochondral bone formation was markedly reduced, while inflammation and fibroproliferative responses remained largely intact in the injured muscle. Remarkably, spontaneous heterotopic ossification also substantially decreased in in Acvr1(R206H) knock-in mice treated systemically at birth or in early adulthood. Collectively, we develop promising gene therapeutics that can prevent disabling heterotopic ossification in mice, supporting clinical translation to patients with fibrodysplasia ossificans progressiva.


Assuntos
MicroRNAs , Miosite Ossificante , Ossificação Heterotópica , Adulto , Animais , Humanos , Camundongos , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Terapia Genética , Camundongos Transgênicos , Mutação , Miosite Ossificante/genética , Miosite Ossificante/terapia , Ossificação Heterotópica/genética , Ossificação Heterotópica/terapia , Ossificação Heterotópica/metabolismo , Osteogênese/genética , Adenoviridae/genética
6.
Am J Case Rep ; 22: e931614, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34108438

RESUMO

BACKGROUND Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant disorder of the connective tissue. Over time, patients with FOP experience decreased range of motion in the joints and the formation of a second skeleton, limiting mobility. Patients with FOP are advised to avoid any unwarranted surgery owing to the risk of a heterotopic ossification flare-up. For patients who do require a surgical procedure, a multidisciplinary team is recommended for comprehensive management of the patient's needs. CASE REPORT A 27-year-old woman with FOP underwent a hysterectomy for removal of a suspected necrotic uterine fibroid. To aid in presurgical planning and management, patient-specific 3-dimensional (3D) models of the patient's tracheobronchial tree, thorax, and lumbosacral spine were printed from the patient's preoperative computed tomography (CT) imaging. The patient required awake nasal fiberoptic intubation for general anesthesia and transversus abdominus plane block for regional anesthesia. Other anesthesia modalities, including spinal epidural, were ruled out after visualizing the patient's anatomy using the 3D model. Postoperatively, the patient was started on a multi-modal analgesic regimen and a course of steroids, and early ambulation was encouraged. CONCLUSIONS Patients with FOP are high-risk surgical patients requiring the care of multiple specialties. Advanced visualization methods, including 3D printing, can be used to better understand their anatomy and locations of heterotopic bone ossification that can affect patient positioning. Our patient successfully underwent supracervical hysterectomy and bilateral salpingectomy with no signs of fever or sepsis at follow-up.


Assuntos
Leiomioma , Miosite Ossificante , Ossificação Heterotópica , Adulto , Feminino , Humanos , Intubação Intratraqueal , Miosite Ossificante/diagnóstico por imagem , Miosite Ossificante/cirurgia , Ossificação Heterotópica/diagnóstico por imagem , Radiografia
7.
Bone ; 140: 115539, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32730934

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare genetic disorder of extraskeletal bone formation, but could appropriately be viewed as a seminal disorder of osteochondrogenesis. Many, if not most, of the musculoskeletal features of FOP are related to dysregulated chondrogenesis including abnormal articular cartilage formation, abnormal diarthrodial joint specification, growth plate dysplasia, osteochondroma formation, heterotopic endochondral ossification (HEO), and precocious arthropathy. In FOP, causative activating mutations of Activin receptor A type I (ACVR1), a bone morphogenetic protein (BMP) type I receptor, are responsible for the osteochondrodysplasia that impacts developmental phenotypes as well as postnatal features of this illustrative disorder. Here, we highlight the myriad developmental and postnatal effects on osteochondrogenesis that emanate directly from mutant ACVR1 and dysregulated bone morphogenetic protein (BMP) signaling in FOP.


Assuntos
Miosite Ossificante , Ossificação Heterotópica , Receptores de Ativinas Tipo I/genética , Proteínas Morfogenéticas Ósseas , Condrogênese , Humanos , Miosite Ossificante/genética , Ossificação Heterotópica/genética
8.
Bone ; 130: 115116, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655222

RESUMO

RATIONALE: Fibrodysplasia ossificans progressiva (FOP) is primarily a disease of progressive heterotopic ossification (HO) leading to impaired mobility throughout life. An additional diagnostic feature is a characteristic malformation of the great toes. The culpable gene for FOP,ACVR1 (activin A receptor type 1) has a clear effect on the induction of extra-skeletal bone formation. However, this bone morphogenetic protein (BMP) pathway receptor is expressed widely throughout skeletal development and has a seminal role in axial and appendicular chondrogenesis, prompting suspicion of widespread bone and joint defects in those with ACVR1 mutations. MATERIALS AND METHODS: We analyzed baseline whole body (minus skull) computed tomographic (CT) scans of 113 individuals with classic clinical features of FOP and the ACVR1 (R206H) mutation who were enrolled in a non-interventional natural history study ((NCT02322255)) for skeletal malformations, atypical morphology, intra-articular synovial osteochondromatosis, developmental arthropathy, and associated degenerative joint phenotypes. Individuals were evaluated in three age groups: 4-13; 14-25; and 25-56 years old, based on historical models of FOP disease progression. RESULTS: We found widespread evidence of developmental arthropathy throughout the axial and appendicular skeleton in all age groups (61M, 52F; ages: 4-56 years). Asymmetric narrowing and subchondral sclerosis were present throughout the joints of the normotopic skeleton and osteophytes were common in the hips and knees of individuals who have FOP in all age groups. The costovertebral joints, intervertebral facet joints, and proximal tibio-fibular joints frequently showed partial or total intra-articular ankylosis, particularly after age 13. The hips of FOP subjects are frequently malformed and dysplastic. We also found evidence of degenerative joint phenotypes after age 13, particularly in the spine, sacro-iliac joints, and lower limbs. CONCLUSIONS: The effects of ACVR1 mutation on the normotopic skeletons of individuals who have FOP extend beyond malformation of the great toes and include both morphological defects and developmental arthropathy. Associated degenerative joint disease occurring at multiple sites starts in adolescence and progresses throughout life. These phenotypes appear to be uncoupled from heterotopic bone formation, indicating a potential role for ACVR1 in the development and progression of degenerative joint disease. SIGNIFICANCE: FOP is a disease of not only progressive heterotopic ossification, but also widespread and extensive developmental arthropathy and associated degenerative joint disease. These findings have relevance for understanding the natural history of FOP and for designing and evaluating clinical trials with emerging therapeutics.


Assuntos
Artropatias , Miosite Ossificante , Ossificação Heterotópica , Receptores de Ativinas Tipo I/genética , Adolescente , Adulto , Proteínas Morfogenéticas Ósseas , Criança , Pré-Escolar , Humanos , Pessoa de Meia-Idade , Miosite Ossificante/diagnóstico por imagem , Miosite Ossificante/genética , Ossificação Heterotópica/diagnóstico por imagem , Ossificação Heterotópica/genética , Adulto Jovem
9.
Am J Med Genet A ; 179(7): 1310-1314, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31012264

RESUMO

A 16-year-old girl with a history of nontraumatic swelling of both forearms, osteochondromas of the knees, heterotopic ossification of the neck and back, severe malformations of all digits with hypoplastic or absent nails, alopecia partialis of the scalp, and moderate cognitive impairment was seen for diagnostic evaluation. Whole exome sequencing identified an activating mutation of ACVR1 (c.983G > A; p.Gly328Glu) which confirmed a suspected FOP variant. The delayed diagnosis of an FOP variant in this patient could have been avoided if the significance of severe digital malformations had been recognized, especially in the setting of progressive heterotopic ossification.


Assuntos
Dedos/anormalidades , Mutação , Miosite Ossificante/patologia , Receptores de Ativinas Tipo I/genética , Adolescente , Feminino , Humanos , Miosite Ossificante/genética
10.
Bone ; 109: 56-60, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29320714

RESUMO

Mesenteric heterotopic ossification (MHO) is very rare and occurs in mid- to late-adulthood, usually in the context of prior abdominal surgery. The mechanisms of MHO are unknown. Here we describe the case of a 72-year-old man with MHO. Standard histological staining revealed that MHO occurred through an endochondral process. By comparison to known mutations in genetic conditions of HO such as fibrodysplasia ossificans progressiva (FOP) and progressive osseous heteroplasia (POH), DNA sequencing analysis demonstrated the presence of a commonly occurring heterozygous synonymous polymorphism (c.690G>A; E230E) in the causative gene for FOP (ACVR1/ALK2). However, no frameshift, missense, or nonsense mutations in ACVR1, or in the causative gene for POH (GNAS), were found. Although genetic predisposition may play a role in MHO, our data suggest that mutations which occur in known hereditary conditions of HO are not the primary cause.


Assuntos
Ossificação Heterotópica/genética , Ossificação Heterotópica/patologia , Idoso , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/patologia , Predisposição Genética para Doença , Humanos , Masculino , Miosite Ossificante/genética , Miosite Ossificante/patologia , Análise de Sequência de DNA , Dermatopatias Genéticas/genética , Dermatopatias Genéticas/patologia
11.
Bone ; 109: 276-280, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28736245

RESUMO

BACKGROUND: Fibrodysplasia ossificans progressiva (FOP) is an ultrarare genetic disorder of progressive, disabling heterotopic ossification (HO) for which there is presently no definitive treatment. Research studies have identified multiple potential targets for therapy in FOP, and novel drug candidates are being developed for testing in clinical trials. A complementary approach seeks to identify approved drugs that could be re-purposed for off-label use against defined targets in FOP. One such drug is imatinib mesylate, a tyrosine kinase inhibitor originally developed for use in patients with chronic myeloid leukemia (CML). Imatinib has the desirable effect of attacking multiple targets involved in the early hypoxic and inflammatory stages of FOP flare-ups, including HIF1-α, PDGFRα, c-KIT, and multiple MAP kinases. RESULTS: Based on compelling biologic rationale, strong preclinical data, and a favorable safety profile, imatinib has been prescribed on an off-label basis in a non-trial setting in seven children with continuous FOP flare-ups, predominantly in the axial regions, and which were not responsive to standard-of-care regimens. Anecdotal reports in these seven isolated cases document that the medication was well-tolerated with a ubiquitous reported decrease in the intensity of flare-ups in the six children who took the medication. CONCLUSIONS: These early clinical observations support the implementation of clinical trials in children with uncontrolled FOP flare-ups to determine if imatinib may ameliorate symptoms or alter the natural history of this debilitating and life-threatening disease.


Assuntos
Mesilato de Imatinib/uso terapêutico , Miosite Ossificante/tratamento farmacológico , Ossificação Heterotópica/tratamento farmacológico , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Adolescente , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Mutação/genética , Miosite Ossificante/genética , Miosite Ossificante/metabolismo , Ossificação Heterotópica/genética , Ossificação Heterotópica/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo
12.
Bone ; 109: 28-34, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28688892

RESUMO

In recent years, the mechanisms and clinical significance of vascular calcification have been increasingly investigated. For over a century, however, pathologists have recognized that vascular calcification is a form of heterotopic ossification. In this review, we aim to describe the pathology and molecular processes of vascular ossification, to characterize its clinical significance and treatment options, and to elucidate areas that require further investigation. The molecular mechanisms of vascular ossification involve the activation of regulators including bone morphogenic proteins and chondrogenic transcription factors and the loss of mineralization inhibitors like fetuin-A and pyrophosphate. Although few studies have examined the gross pathology of vascular ossification, the presence of these molecular regulators and evidence of microfractures and cartilage have been demonstrated on heart valves and atherosclerotic plaques. These changes are often triggered by common inflammatory and metabolic disorders like diabetes, hyperlipidemia, and chronic kidney disease. The increasing prevalence of these diseases warrants further research into the clinical significance of vascular ossification and future treatment options.


Assuntos
Ossificação Heterotópica/metabolismo , Ossificação Heterotópica/patologia , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Animais , Difosfatos/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Ossificação Heterotópica/genética , Ligante RANK/genética , Ligante RANK/metabolismo , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , alfa-2-Glicoproteína-HS/genética , alfa-2-Glicoproteína-HS/metabolismo
13.
J Bone Miner Res ; 33(2): 269-282, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28986986

RESUMO

Heterotopic ossification (HO) is a clinical condition that often reduces mobility and diminishes quality of life for affected individuals. The most severe form of progressive HO occurs in those with fibrodysplasia ossificans progressiva (FOP; OMIM #135100), a genetic disorder caused by a recurrent heterozygous gain-of-function mutation (R206H) in the bone morphogenetic protein (BMP) type I receptor ACVR1/ALK2. In individuals with FOP, episodes of HO frequently follow injury. The first sign of active disease is commonly an inflammatory "flare-up" that precedes connective tissue degradation, progenitor cell recruitment, and endochondral HO. We used a conditional-on global knock-in mouse model expressing Acvr1R206H (referred to as Acvr1cR206H/+ ) to investigate the cellular and molecular inflammatory response in FOP lesions following injury. We found that the Acvr1 R206H mutation caused increased BMP signaling in posttraumatic FOP lesions and early divergence from the normal skeletal muscle repair program with elevated and prolonged immune cell infiltration. The proinflammatory cytokine response of TNFα, IL-1ß, and IL-6 was elevated and prolonged in Acvr1cR206H/+ lesions and in Acvr1cR206H/+ mast cells. Importantly, depletion of mast cells and macrophages significantly impaired injury-induced HO in Acvr1cR206H/+ mice, reducing injury-induced HO volume by ∼50% with depletion of each cell population independently, and ∼75% with combined depletion of both cell populations. Together, our data show that the immune system contributes to the initiation and development of HO in FOP. Further, the expression of Acvr1R206H in immune cells alters cytokine expression and cellular response to injury and unveils novel therapeutic targets for treatment of FOP and nongenetic forms of HO. © 2017 American Society for Bone and Mineral Research.


Assuntos
Receptores de Ativinas Tipo I/genética , Macrófagos/patologia , Mastócitos/patologia , Miosite Ossificante/patologia , Ossificação Heterotópica/patologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Contagem de Células , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Mastócitos/metabolismo , Camundongos , Músculo Esquelético/patologia , Mutação/genética , Ossificação Heterotópica/metabolismo , Transdução de Sinais
14.
Bone ; 109: 115-119, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28822791

RESUMO

BACKGROUND: Flare-ups of the hips are among the most feared and disabling complications of fibrodysplasia ossificans progressiva (FOP) and are poorly understood. In order to better understand the nature of hip flare-ups in FOP, we evaluated 25 consecutive individuals with classic FOP (14 males, 11 females; 3-56years old, median age, 17years old) who presented with acute unilateral hip pain. RESULTS: All 25 individuals were suspected of having a flare-up of the hip based on clinical history and a favorable response to a four day course of high-dose oral prednisone. Ten individuals (40%) experienced rebound symptoms of pain and/or stiffness within seven days after discontinuation of prednisone and all ten subsequently developed heterotopic ossification (HO) or decreased mobility of the affected hip. None of the 14 individuals who experienced sustained relief of symptoms following a course of oral prednisone experienced HO or decreased mobility. Incidental radiographic findings at the time of presentation were multifactoral and included osteochondromas of the proximal femur (18/25; 72%), degenerative arthritis (17/25; 68%), developmental hip dysplasia (15/25; 60%), previously existing heterotopic ossification (12/25; 48%), intra-articular synovial osteochondromatosis (8/25; 32%) or traumatic fractures through pre-existing heterotopic bone (1/25; 4%). CONCLUSIONS: Developmental joint pathology may confound clinical evaluation of hip pain in FOP. The most useful modality for suspecting an ossification-prone flare-up of the hip was lack of sustained response to a brief course of oral prednisone. Evaluation of soft tissue edema by ultrasound or magnetic resonance imaging showed promise in identifying ossification-prone flare-ups and warrants further analysis in prospective studies.


Assuntos
Miosite Ossificante/diagnóstico , Miosite Ossificante/patologia , Dor/diagnóstico , Ossos Pélvicos/patologia , Doença Aguda , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Bone ; 109: 153-157, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28963080

RESUMO

BACKGROUND: Genesis of a cartilaginous scaffold is an obligate precursor to bone formation in heterotopic endochondral ossification (HEO). We tested the hypothesis that cartilage-derived retinoic acid-sensitive protein (CD-RAP) can serve as a plasma biomarker for the pre-osseous cartilaginous stage of HEO. Palovarotene, a retinoic acid receptor-gamma (RARγ) agonist, has been proposed as a possible treatment for fibrodysplasia ossificans progressiva (FOP) and is a potent inhibitor of HEO in mouse models. Current drug development for FOP mandates the identification of stage-specific biomarkers to facilitate the evaluation of clinical trial endpoints. RESULTS: Here we show in an injury-induced, constitutively-active transgenic mouse model of FOP that CD-RAP levels peaked between day-7 and day-10 during the zenith of histologically-identified chondrogenesis, preceded radiographically apparent HEO, and were diminished by palovarotene. Cross-sectional analysis of CD-RAP levels in plasma samples from FOP patients demonstrated a statistically non-significant trend toward higher levels in the recent flare-up period (three weeks to three months within onset of symptoms). However, in a longitudinal subgroup analysis of patients followed for at least six months after resolution of flare-up symptoms, there was a statistically significant decrease of CD-RAP when compared to levels in the same patients at the time of active or recent exacerbations. CONCLUSIONS: These data support the further exploration of CD-RAP as a stage-specific biomarker of HEO in FOP.


Assuntos
Biomarcadores/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Miosite Ossificante/metabolismo , Miosite Ossificante/patologia , Proteínas de Neoplasias/metabolismo , Ossificação Heterotópica/metabolismo , Ossificação Heterotópica/patologia , Adulto , Animais , Estudos Transversais , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Osteogênese/fisiologia , Adulto Jovem
16.
Bone ; 109: 259-266, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28851540

RESUMO

BACKGROUND: Episodic flare-ups of fibrodysplasia ossificans progressiva (FOP) are characterized clinically by severe, often posttraumatic, connective tissue swelling and intramuscular edema, followed histologically by an intense and highly angiogenic fibroproliferative reaction. This early inflammatory and angiogenic fibroproliferative response is accompanied by the presence of abundant mast cells far in excess of other reported myopathies. RESULTS: Using an injury-induced, constitutively-active transgenic mouse model of FOP we show that mast cell inhibition by cromolyn, but not aprepitant, results in a dramatic reduction of heterotopic ossification. Cromolyn, but not aprepitant, significantly decreases the total number of mast cells in FOP lesions. Furthermore, cromolyn specifically diminishes the number of degranulating and resting degranulated mast cells in pre-osseous lesions. CONCLUSIONS: This work demonstrates that consideration of FOP as a type of localized mastocytosis may offer new therapeutic interventions for treatment of this devastating condition.


Assuntos
Mastócitos/citologia , Miosite Ossificante/tratamento farmacológico , Ossificação Heterotópica/tratamento farmacológico , Animais , Aprepitanto , Cromolina Sódica/uso terapêutico , Modelos Animais de Doenças , Camundongos , Morfolinas/uso terapêutico , Miosite Ossificante/metabolismo , Ossificação Heterotópica/metabolismo
18.
Sci Rep ; 7: 45140, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28338087

RESUMO

Skeletal bone formation and maintenance requires coordinate functions of several cell types, including bone forming osteoblasts and bone resorbing osteoclasts. Gsα, the stimulatory subunit of heterotrimeric G proteins, activates downstream signaling through cAMP and plays important roles in skeletal development by regulating osteoblast differentiation. Here, we demonstrate that Gsα signaling also regulates osteoclast differentiation during bone modeling and remodeling. Gnas, the gene encoding Gsα, is imprinted. Mice with paternal allele deletion of Gnas (Gnas+/p-) have defects in cortical bone quality and strength during early development (bone modeling) that persist during adult bone remodeling. Reduced bone quality in Gnas+/p- mice was associated with increased endosteal osteoclast numbers, with no significant effects on osteoblast number and function. Osteoclast differentiation and resorption activity was enhanced in Gnas+/p- cells. During differentiation, Gnas+/p- cells showed diminished pCREB, ß-catenin and cyclin D1, and enhanced Nfatc1 levels, conditions favoring osteoclastogenesis. Forskolin treatment increased pCREB and rescued osteoclast differentiation in Gnas+/p- by reducing Nfatc1 levels. Cortical bone of Gnas+/p- mice showed elevated expression of Wnt inhibitors sclerostin and Sfrp4 consistent with reduced Wnt/ß-catenin signaling. Our data identify a new role for Gsα signaling in maintaining bone quality by regulating osteoclast differentiation and function through cAMP/PKA and Wnt/ß-catenin pathways.


Assuntos
Diferenciação Celular , Cromograninas/metabolismo , Osso Cortical/citologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Osteoclastos/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Cromograninas/genética , Osso Cortical/metabolismo , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ciclina D1/metabolismo , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
19.
Bone ; 92: 29-36, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27492611

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is a rare and devastating genetic disease of heterotopic endochondral ossification (HEO), and currently no effective therapies are available for this disease. A recurrent causative heterozygous mutation (c.617 G>A; R206H) for FOP was identified in activin receptor type IA (ACVR1), a bone morphogenetic protein (BMP) type I receptor. This mutation aberrantly activates the BMP-Smad1/5/8 signaling pathway and leads to HEO in FOP patients. Here we report development of a soluble recombinant ACVR1-Fc fusion protein by combining the extracellular domain of human wild type ACVR1 and the Fc portion of human immunoglobulin gamma 1 (IgG1). The ACVR1-Fc fusion protein significantly down-regulated the dysregulated BMP signaling caused by the FOP ACVR1 mutation and effectively suppressed chondro-osseous differentiation in a previously described cellular FOP model, human umbilical vein endothelial cells (HUVECs) that were infected with adenovirus-ACVR1R206H (HUVECR206H). This ACVR1-Fc fusion protein holds great promise for prevention and treatment of HEO in FOP and related diseases.


Assuntos
Receptores de Ativinas Tipo I/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/fisiologia , Condrogênese/fisiologia , Miosite Ossificante/metabolismo , Osteogênese/fisiologia , Receptores de Ativinas Tipo I/farmacologia , Receptores de Ativinas Tipo I/uso terapêutico , Animais , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Células CHO , Diferenciação Celular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana , Humanos , Miosite Ossificante/tratamento farmacológico , Osteogênese/efeitos dos fármacos , Ligação Proteica/fisiologia
20.
Appl Clin Genet ; 8: 37-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25674011

RESUMO

Progressive osseous heteroplasia (POH) is an ultrarare genetic condition of progressive ectopic ossification. Most cases of POH are caused by heterozygous inactivating mutations of GNAS, the gene encoding the alpha subunit of the G-stimulatory protein of adenylyl cyclase. POH is part of a spectrum of related genetic disorders, including Albright hereditary osteodystrophy, pseudohypoparathyroidism, and primary osteoma cutis, that share common features of superficial ossification and association with inactivating mutations of GNAS. The genetics, diagnostic criteria, supporting clinical features, current management, and prognosis of POH are reviewed here, and emerging therapeutic strategies are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA