Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(19): e202403271, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38497510

RESUMO

Unnatural amino acids, and their synthesis by the late-stage functionalization (LSF) of peptides, play a crucial role in areas such as drug design and discovery. Historically, the LSF of biomolecules has predominantly utilized traditional synthetic methodologies that exploit nucleophilic residues, such as cysteine, lysine or tyrosine. Herein, we present a photocatalytic hydroarylation process targeting the electrophilic residue dehydroalanine (Dha). This residue possesses an α,ß-unsaturated moiety and can be combined with various arylthianthrenium salts, both in batch and flow reactors. Notably, the flow setup proved instrumental for efficient scale-up, paving the way for the synthesis of unnatural amino acids and peptides in substantial quantities. Our photocatalytic approach, being inherently mild, permits the diversification of peptides even when they contain sensitive functional groups. The readily available arylthianthrenium salts facilitate the seamless integration of Dha-containing peptides with a wide range of arenes, drug blueprints, and natural products, culminating in the creation of unconventional phenylalanine derivatives. The synergistic effect of the high functional group tolerance and the modular characteristic of the aryl electrophile enables efficient peptide conjugation and ligation in both batch and flow conditions.


Assuntos
Alanina , Alanina/análogos & derivados , Peptídeos , Peptídeos/química , Peptídeos/síntese química , Catálise , Alanina/química , Processos Fotoquímicos , Estrutura Molecular
2.
Angew Chem Int Ed Engl ; 62(9): e202216661, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36581584

RESUMO

Bioorthogonal late-stage diversification of structurally complex peptides bears enormous potential for drug discovery and molecular imaging, among other applications. Herein, we report on a palladium-catalyzed C-H arylation of tryptophan-containing peptides with readily accessible and modular arylthianthrenium salts. Under exceedingly mild reaction conditions, the late-stage diversification of structurally complex peptides was accomplished. The tunability and ease of preparation of arylthianthrenium salts allowed the expedient stitching of tryptophan-containing peptides with drug, natural product, and peptidic scaffolds by forging sterically congested biaryl linkages. The robustness of the palladium catalysis regime was reflected by the full tolerance of a plethora of sensitive and coordinating functional groups. Hence, our manifold enabled efficient access to highly decorated, labelled, conjugated, and ligated linear and cyclic peptides.


Assuntos
Sais , Triptofano , Triptofano/química , Paládio/química , Catálise , Peptídeos/química
3.
Nat Commun ; 12(1): 3389, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099672

RESUMO

Bioorthogonal late-stage diversification of amino acids and peptides bears enormous potential for drug discovery and molecular imaging. Despite major accomplishments, these strategies largely rely on traditional, lengthy prefunctionalization methods, heavily involving precious transition-metal catalysis. Herein, we report on a resource-economical manganese(I)-catalyzed C-H fluorescent labeling of structurally complex peptides ensured by direct alkynylation and alkenylation manifolds. This modular strategy sets the stage for unraveling structure-activity relationships between structurally discrete fluorophores towards the rational design of BODIPY fluorogenic probes for real-time analysis of immune cell function.


Assuntos
Técnicas de Química Sintética/métodos , Corantes Fluorescentes/síntese química , Manganês/química , Peptídeos/síntese química , Compostos de Boro/química , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Carbono/química , Catálise , Membrana Celular/metabolismo , Humanos , Hidrogênio/química , Células Jurkat , Microscopia Confocal , Microscopia de Fluorescência , Imagem Molecular/métodos
4.
Chem Commun (Camb) ; 57(47): 5758-5761, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34002741

RESUMO

We report a selective, mild, and efficient C-H functionalization of tryptophan and tryptophan-containing peptides with activated α-bromo-carbonyl compounds under visible-light irradiation. The protocol efficiency is outlined by the wide substrate scope and excellent tolerance of sensitive functional groups present in the amino acid side chains. The method can be successfully extended to access pharmaco-peptide conjugate scaffolds.


Assuntos
Indóis/química , Peptídeos/química , Triptofano/química , Alquilação , Catálise , Estrutura Molecular , Processos Fotoquímicos
5.
Nat Commun ; 10(1): 3553, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391461

RESUMO

Methods for the late-stage diversification of structurally complex peptides hold enormous potential for advances in drug discovery, agrochemistry and pharmaceutical industries. While C-H arylations emerged for peptide modifications, they are largely limited to highly reactive, expensive and/or toxic reagents, such as silver(I) salts, in superstoichiometric quantities. In sharp contrast, we herein establish the ruthenium(II)-catalyzed C-H alkylation on structurally complex peptides. The additive-free ruthenium(II)carboxylate C-H activation manifold is characterized by ample substrate scope, racemization-free conditions and the chemo-selective tolerance of otherwise reactive functional groups, such as electrophilic ketone, bromo, ester, amide and nitro substituents. Mechanistic studies by experiment and computation feature an acid-enabled C-H ruthenation, along with a notable protodemetalation step. The transformative peptide C-H activation regime sets the stage for peptide ligation in solution and proves viable in a bioorthogonal fashion for C-H alkylations on user-friendly supports by means of solid phase peptide syntheses.


Assuntos
Peptídeos/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Alquilação , Carbono/química , Catálise , Hidrogênio/química , Ligação de Hidrogênio , Rutênio/química
6.
Angew Chem Int Ed Engl ; 58(6): 1684-1688, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30499607

RESUMO

Bioorthogonal late-stage diversification of structurally complex peptides has enormous potential for drug discovery and molecular imaging. In recent years, transition-metal-catalyzed C-H activation has emerged as an increasingly viable tool for peptide modification. Despite major accomplishments, these strategies largely rely on expensive palladium catalysts. We herein report an unprecedented cobalt(III)-catalyzed peptide C-H activation, which enables the direct C-H functionalization of structurally complex peptides, and sets the stage for a multicatalytic C-H activation/alkene metathesis/hydrogenation strategy for the assembly of novel cyclic peptides.


Assuntos
Cobalto/química , Compostos Organometálicos/química , Peptídeos/síntese química , Catálise , Estrutura Molecular , Peptídeos/química , Estereoisomerismo
7.
Angew Chem Int Ed Engl ; 56(6): 1576-1580, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28074503

RESUMO

Methods for the chemoselective modification of amino acids and peptides are powerful techniques in biomolecular chemistry. Among other applications, they enable the total synthesis of artificial peptides. In recent years, significant momentum has been gained by exploiting palladium-catalyzed cross-coupling for peptide modification. Despite major advances, the prefunctionalization elements on the coupling partners translate into undesired byproduct formation and lengthy synthetic operations. In sharp contrast, we herein illustrate the unprecedented use of versatile ruthenium(II)carboxylate catalysis for the step-economical late-stage diversification of α- and ß-amino acids, as well as peptides, through chemo-selective C-H arylation under racemization-free reaction conditions. The ligand-accelerated C-H activation strategy proved water-tolerant and set the stage for direct fluorescence labelling as well as various modes of peptide ligation with excellent levels of positional selectivity in a bioorthogonal fashion. The synthetic utility of our approach is further demonstrated by twofold C-H arylations for the complexity-increasing assembly of artificial peptides within a multicatalytic C-H activation manifold.


Assuntos
Ácidos Carboxílicos/química , Peptídeos/química , Rutênio/química , Aminoácidos/síntese química , Aminoácidos/química , Catálise , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Hidrocarbonetos Aromáticos/síntese química , Hidrocarbonetos Aromáticos/química , Hidrogênio/química , Paládio/química , Peptídeos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA