Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol ; 146(2): 173-190, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37368072

RESUMO

Meningiomas are the most common primary intracranial tumors. Although most symptomatic cases can be managed by surgery and/or radiotherapy, a relevant number of patients experience an unfavorable clinical course and additional treatment options are needed. As meningiomas are often perfused by dural branches of the external carotid artery, which is located outside the blood-brain barrier, they might be an accessible target for immunotherapy. However, the landscape of naturally presented tumor antigens in meningioma is unknown. We here provide a T-cell antigen atlas for meningioma by in-depth profiling of the naturally presented immunopeptidome using LC-MS/MS. Candidate target antigens were selected based on a comparative approach using an extensive immunopeptidome data set of normal tissues. Meningioma-exclusive antigens for HLA class I and II are described here for the first time. Top-ranking targets were further functionally characterized by showing their immunogenicity through in vitro T-cell priming assays. Thus, we provide an atlas of meningioma T-cell antigens which will be publicly available for further research. In addition, we have identified novel actionable targets that warrant further investigation as an immunotherapy option for meningioma.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/terapia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Imunoterapia , Linfócitos T , Neoplasias Meníngeas/terapia
2.
J Immunother Cancer ; 9(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33858848

RESUMO

BACKGROUND: The human leucocyte antigen (HLA) complex controls adaptive immunity by presenting defined fractions of the intracellular and extracellular protein content to immune cells. Understanding the benign HLA ligand repertoire is a prerequisite to define safe T-cell-based immunotherapies against cancer. Due to the poor availability of benign tissues, if available, normal tissue adjacent to the tumor has been used as a benign surrogate when defining tumor-associated antigens. However, this comparison has proven to be insufficient and even resulted in lethal outcomes. In order to match the tumor immunopeptidome with an equivalent counterpart, we created the HLA Ligand Atlas, the first extensive collection of paired HLA-I and HLA-II immunopeptidomes from 227 benign human tissue samples. This dataset facilitates a balanced comparison between tumor and benign tissues on HLA ligand level. METHODS: Human tissue samples were obtained from 16 subjects at autopsy, five thymus samples and two ovary samples originating from living donors. HLA ligands were isolated via immunoaffinity purification and analyzed in over 1200 liquid chromatography mass spectrometry runs. Experimentally and computationally reproducible protocols were employed for data acquisition and processing. RESULTS: The initial release covers 51 HLA-I and 86 HLA-II allotypes presenting 90,428 HLA-I- and 142,625 HLA-II ligands. The HLA allotypes are representative for the world population. We observe that immunopeptidomes differ considerably between tissues and individuals on source protein and HLA-ligand level. Moreover, we discover 1407 HLA-I ligands from non-canonical genomic regions. Such peptides were previously described in tumors, peripheral blood mononuclear cells (PBMCs), healthy lung tissues and cell lines. In a case study in glioblastoma, we show that potential on-target off-tumor adverse events in immunotherapy can be avoided by comparing tumor immunopeptidomes to the provided multi-tissue reference. CONCLUSION: Given that T-cell-based immunotherapies, such as CAR-T cells, affinity-enhanced T cell transfer, cancer vaccines and immune checkpoint inhibition, have significant side effects, the HLA Ligand Atlas is the first step toward defining tumor-associated targets with an improved safety profile. The resource provides insights into basic and applied immune-associated questions in the context of cancer immunotherapy, infection, transplantation, allergy and autoimmunity. It is publicly available and can be browsed in an easy-to-use web interface at https://hla-ligand-atlas.org .


Assuntos
Antígenos de Neoplasias/imunologia , Antígenos HLA/imunologia , Imunoterapia Adotiva , Neoplasias/terapia , Peptídeos/imunologia , Proteoma , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/transplante , Idoso , Idoso de 80 Anos ou mais , Cromatografia Líquida , Bases de Dados de Proteínas , Feminino , Humanos , Lactente , Recém-Nascido , Ligantes , Masculino , Pessoa de Meia-Idade , Neoplasias/genética , Neoplasias/imunologia , Proteômica , Receptores de Antígenos Quiméricos/genética , Linfócitos T/imunologia , Espectrometria de Massas em Tandem
3.
Cell ; 181(7): 1626-1642.e20, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32470397

RESUMO

Brain malignancies can either originate from within the CNS (gliomas) or invade from other locations in the body (metastases). A highly immunosuppressive tumor microenvironment (TME) influences brain tumor outgrowth. Whether the TME is predominantly shaped by the CNS micromilieu or by the malignancy itself is unknown, as is the diversity, origin, and function of CNS tumor-associated macrophages (TAMs). Here, we have mapped the leukocyte landscape of brain tumors using high-dimensional single-cell profiling (CyTOF). The heterogeneous composition of tissue-resident and invading immune cells within the TME alone permitted a clear distinction between gliomas and brain metastases (BrM). The glioma TME presented predominantly with tissue-resident, reactive microglia, whereas tissue-invading leukocytes accumulated in BrM. Tissue-invading TAMs showed a distinctive signature trajectory, revealing tumor-driven instruction along with contrasting lymphocyte activation and exhaustion. Defining the specific immunological signature of brain tumors can facilitate the rational design of targeted immunotherapy strategies.


Assuntos
Neoplasias Encefálicas/imunologia , Leucócitos/imunologia , Microambiente Tumoral/imunologia , Neoplasias Encefálicas/patologia , Feminino , Glioma/patologia , Humanos , Imunoterapia , Leucócitos/metabolismo , Leucócitos/fisiologia , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Microglia/patologia , Metástase Neoplásica/patologia
4.
Acta Neuropathol ; 135(6): 923-938, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29557506

RESUMO

Glioblastoma is the most frequent malignant primary brain tumor. In a hierarchical tumor model, glioblastoma stem-like cells (GSC) play a major role in tumor initiation and maintenance as well as in therapy resistance and recurrence. Thus, targeting this cellular subset may be key to effective immunotherapy. Here, we present a mass spectrometry-based analysis of HLA-presented peptidomes of GSC and glioblastoma patient specimens. Based on the analysis of patient samples (n = 9) and GSC (n = 3), we performed comparative HLA peptidome profiling against a dataset of normal human tissues. Using this immunopeptidome-centric approach we could clearly delineate a subset of naturally presented, GSC-associated HLA ligands, which might serve as highly specific targets for T cell-based immunotherapy. In total, we identified 17 antigens represented by 41 different HLA ligands showing natural and exclusive presentation both on GSC and patient samples. Importantly, in vitro immunogenicity and antigen-specific target cell killing assays suggest these peptides to be epitopes of functional CD8+ T cell responses, thus rendering them prime candidates for antigen-specific immunotherapy of glioblastoma.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Antígenos HLA/metabolismo , Células-Tronco Neoplásicas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Criança , Estudos de Coortes , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Imunoterapia/métodos , Isocitrato Desidrogenase/genética , Ligantes , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA